O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.

URGENTE

1) Represente os seguintes pontos no plano cartesiano: A (3, 2)
B(- 2,5) C (0,-1) D (-4,1) E (1, - 3)

2) Utilizando os pontos da questão 1, determine o ponto médio do segmento determinado pelos dois pontos que pertencem ao mesmo quadrante.

3) Os pontos (3, 6) (1, 2) e (- 1, - 4) são pontos médios dos lados de um triângulo. Determine os vértices deste triángulo.

4) Determine o baricentro do triângulo da questão 3.

5) Escolha uma mediana do triângulo da questão 3 e mostre que o baricentro divide a mediana em razão 1:2

PRECISO PRA HOJE ME AJUDEM É URGENTE ​​​​


Sagot :

1) Represente os seguintes pontos no plano cartesiano: A (3, 2), B(- 2, 5), C (0, - 1), D (- 4, 1) e E (1, - 3).

Imagem em anexo

2) Utilizando os pontos da questão 1, determine o ponto médio do segmento determinado pelos dois pontos que pertencem ao mesmo quadrante.

Os pontos que pertencem ao mesmo quadrante são os pontos B e D, que estão no 2° quadrante.

[tex]M_{BD} =(\frac{x_{B}+x_{D}}{2},\frac{y_{B}+y_{D}}{2})\\\\M_{BD} =(\frac{(-2)+(-4)}{2},\frac{(5)+(1)}{2})\\\\M_{BD} =(\frac{-2-4}{2},\frac{5+1}{2})\\\\M_{BD} =(\frac{-6}{2},\frac{6}{2})\\\\M_{BD}=(-3, 3)[/tex]

3) Os pontos (3, 6), (1, 2) e (- 1, - 4) são pontos médios dos lados de um triângulo. Determine os vértices deste triângulo.

Podemos chamar os vértices do triângulo de (a, b), (c, d) e (e, f). Assim, a partir do ponto médio, calculamos os valores de a, b, c, d, e e f.

Na imagem em anexo, estão resolvidas todas as equações necessárias para encontrar os vértices do triângulo a partir dos pontos médios.

Vértice = (1, 0), (5, 12) e (- 3, - 8).

4) Determine o baricentro do triângulo da questão 3.

[tex]G=(\frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3})\\\\G=(\frac{1+5-3}{3},\frac{0+12-8}{3})\\\\G=(\frac{3}{3},\frac{4}{3})\\\\G=(1,\frac{4}{3})[/tex]

5) Escolha uma mediana do triângulo da questão 3 e mostre que o baricentro divide a mediana em razão 1:2

Vamos calcular a distância entre o vértice C (5, 12) e o baricentro G (1, [tex]\frac{4}{3}[/tex]):[tex]d_{CG}=\sqrt{(x_{C}-x_{G})^{2}+(y_{C}-y_{G})^{2}}\\\\d_{CG}=\sqrt{(5-1)^{2}+(12-\frac{4}{3})^{2}}\\\\d_{CG}=\sqrt{(4)^{2}+(\frac{32}{3})^{2}}\\\\d_{CG}=\sqrt{16+\frac{1024}{9}}\\\\d_{CG}=\sqrt{\frac{1168}{9}}\\\\d_{CG}=\frac{4\sqrt{73}}{3}[/tex]

Agora, vamos calcular a distância entre o baricentro G (1, [tex]\frac{4}{3}[/tex]) e o ponto médio do segmento AB M(- 1, - 4):

[tex]d_{GM}=\sqrt{(x_{G}-x_{M})^{2}+(y_{G}-y_{M})^{2}}\\\\d_{GM}=\sqrt{(1-(-1))^{2}+(\frac{4}{3}-(-4))^{2}}\\\\d_{CG}=\sqrt{(1+1)^{2}+(\frac{4}{3}+4)^{2}}\\\\d_{CG}=\sqrt{(2)^{2}+(\frac{16}{3})^{2}}\\\\d_{CG}=\sqrt{4+\frac{256}{9}}\\\\d_{CG}=\sqrt{\frac{292}{9}}\\\\d_{CG}=\frac{2\sqrt{73}}{3}[/tex]

Está provado que a distância entre o vértice C e o baricentro é o dobro da distância entre o baricentro e o ponto médio do segmento AB, ou seja, a mediana é dividida em duas parte onde uma é o dobro da outra (1:2).

View image mlealrj
View image mlealrj
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.