Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

A(1, -2), B (5, x) e C(8, -1) determinam um triângulo retângulo em B (90°). Qual será o valor de x que faz essas características serem cumprida

Sagot :

Os pontos A(1, - 2), B (5, x) e C(8, - 1) formam o ΔABC.

O ΔABC é retângulo em B. Então, as retas AB e BC são perpendiculares.

Cálculo dos coeficientes angulares (m) das retas:

[tex]m=\frac{y_{A}-y_{B}}{x_{A}-x_{B}}[/tex]

Para a reta AB:

[tex]m_{AB} =\frac{y_{A}-y_{B}}{x_{A}-x_{B}}\\\\m_{AB}=\frac{-2-x}{1-5}\\\\m_{AB}=\frac{-2-x}{-4}[/tex]

Para a reta BC:

[tex]m_{BC} =\frac{y_{C}-y_{B}}{x_{C}-x_{B}}\\\\m_{BC}=\frac{-1-x}{8-5}\\\\m_{BC}=\frac{-2-x}{3}[/tex]

A condição para que essas retas sejam perpendiculares é que seus coeficientes angulares sejam inversos e opostos.

[tex]m_{AB}=-\frac{1}{m_{BC}}\\\\m_{AB}.m_{BC}=-1\\\\\frac{-2-x}{-4}.\frac{-1-x}{3}=-1\\\\\frac{2+2x+x+x^{2}}{-12}=-1\\ \\2+3x+x^{2}=12\\\\x^{2}+3x-10=0\\\\x=2[/tex]

View image mlealrj

Resposta:

s= -5, 2

Explicação passo a passo:

Os pontos A(1, - 2), B (5, x) e C(8, - 1) formam o ΔABC.

O ΔABC é retângulo em B. Então, as retas AB e BC são perpendiculares.

A condição para que essas retas sejam perpendiculares é que seus coeficientes angulares sejam inversos e opostos.

m=∆y/∆x

m AB=(x-(-2))/(5-1)= (x+2))/4

m AC=(x-(-1))/(5-8) =(x+1)/(-3)

∆y/∆x=-∆x/∆y

(x+2))/4=(-3)/(x+1)= [tex]x^2+3x-10=0[/tex]

ao resolver a equação, encontrará x'=-5 e x''=2

Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.