O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Resposta: 2
Individualmente, cada um dos logaritmos não pode ser calculado sem o auxílio de calculadora e, para contornar esta situação, aplicaremos as propriedades do logaritmo do produto e do logaritmo da potência para reescrevermos a expressão dada como um único logaritmo.
[tex]\sf Propriedade~do~Logaritmo~do~Produto:~~\boxed{\sf \log_b(a\cdot c)=\log_ba+\log_bc}\\\\\sf Propriedade~do~Logaritmo~da~potencia:~~\boxed{\sf \log_ba^c=c\cdot \log_ba}[/tex]
[tex]\sf Aplicando~a~propriedade~do~logaritmo~da~potencia~em~-2\cdot\log_43:\\\\\\-2\cdot \log_43~=~\log_43^{-2}\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1}{3}\right)^2\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1}{3}\right)\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1^2}{3^2}\right)\\\\\\\boxed{\sf -2\cdot \log_43~=~\log_4\left(\dfrac{1}{9}\right)}[/tex]
Substituindo este logaritmo na expressão e aplicando a propriedade do logaritmo do produto, ficamos com:
[tex]\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(6\cdot 24\cdot \dfrac{1}{9}\right)\\\\\\\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(\dfrac{6\cdot 24\cdot 1}{9}\right)\\\\\\\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(\dfrac{144}{9}\right)\\\\\\\boxed{\sf \sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_416}[/tex]
Este logaritmo podemos, sim, resolver aplicando a definição de logaritmo, como é mostrado abaixo.
[tex]\sf De finicao~de~Logaritmo:~~\boxed{\sf \log_ba=c~~\Leftrightarrow~~a=b^c}[/tex]
[tex]\sf Aplicando~a~de finicao~ao~logaritmo~\log_416:\\\\\\\log_416=x~~\Leftrightarrow~~\boxed{\sf 16=4^x}\\\\\\Igualando~as~bases~nos~dois~lados~da~equacao~16=4^x:\\\\\\4^2~=~4^x\\\\\\Como~as~duas~potencias~possuem~mesma~base,~para~que~a~igualdade~seja\\mantida,~necessariamente,~os~expoentes~devem~tambem~ser~iguais, ~logo:\\\\\\\not\!4\,^2~=~\not\!4\,^x\\\\\\\boxed{\sf x~=~2}[/tex]
Assim, a expressão dada, que simplificamos como log₄16 resulta em 2.
[tex]\Huge{\begin{array}{c}\Delta \tt{\!\!\!\!\!\!\,\,o}\!\!\!\!\!\!\!\!\:\,\perp\end{array}}Qualquer~d\acute{u}vida,~deixe~ um~coment\acute{a}rio[/tex]
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Visite o Sistersinspirit.ca novamente para obter as respostas mais recentes e informações dos nossos especialistas.