O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

log4 6 + log4 24 - 2 × log4 3


PFVR ALGUÉM AJUDA!! ​


Sagot :

Resposta: 2

Individualmente, cada um dos logaritmos não pode ser calculado sem o auxílio de calculadora e, para contornar esta situação, aplicaremos as propriedades do logaritmo do produto e do logaritmo da potência para reescrevermos a expressão dada como um único logaritmo.

[tex]\sf Propriedade~do~Logaritmo~do~Produto:~~\boxed{\sf \log_b(a\cdot c)=\log_ba+\log_bc}\\\\\sf Propriedade~do~Logaritmo~da~potencia:~~\boxed{\sf \log_ba^c=c\cdot \log_ba}[/tex]

[tex]\sf Aplicando~a~propriedade~do~logaritmo~da~potencia~em~-2\cdot\log_43:\\\\\\-2\cdot \log_43~=~\log_43^{-2}\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1}{3}\right)^2\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1}{3}\right)\\\\\\-2\cdot \log_43~=~\log_4\left(\dfrac{1^2}{3^2}\right)\\\\\\\boxed{\sf -2\cdot \log_43~=~\log_4\left(\dfrac{1}{9}\right)}[/tex]

Substituindo este logaritmo na expressão e aplicando a propriedade do logaritmo do produto, ficamos com:

[tex]\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(6\cdot 24\cdot \dfrac{1}{9}\right)\\\\\\\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(\dfrac{6\cdot 24\cdot 1}{9}\right)\\\\\\\sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_4\left(\dfrac{144}{9}\right)\\\\\\\boxed{\sf \sf \log_46~+~\log_424~+~\log_4\left(\dfrac{1}{9}\right)~=~\log_416}[/tex]

Este logaritmo podemos, sim, resolver aplicando a definição de logaritmo, como é mostrado abaixo.

[tex]\sf De finicao~de~Logaritmo:~~\boxed{\sf \log_ba=c~~\Leftrightarrow~~a=b^c}[/tex]

[tex]\sf Aplicando~a~de finicao~ao~logaritmo~\log_416:\\\\\\\log_416=x~~\Leftrightarrow~~\boxed{\sf 16=4^x}\\\\\\Igualando~as~bases~nos~dois~lados~da~equacao~16=4^x:\\\\\\4^2~=~4^x\\\\\\Como~as~duas~potencias~possuem~mesma~base,~para~que~a~igualdade~seja\\mantida,~necessariamente,~os~expoentes~devem~tambem~ser~iguais, ~logo:\\\\\\\not\!4\,^2~=~\not\!4\,^x\\\\\\\boxed{\sf x~=~2}[/tex]

Assim, a expressão dada, que simplificamos como log₄16 resulta em 2.

[tex]\Huge{\begin{array}{c}\Delta \tt{\!\!\!\!\!\!\,\,o}\!\!\!\!\!\!\!\!\:\,\perp\end{array}}Qualquer~d\acute{u}vida,~deixe~ um~coment\acute{a}rio[/tex]