Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

Observe, no quadro abaixo, os seis primeiros termos de uma sequência numérica. 12,17,22,27,32,37,. Quais são as expressões que permitem determinar cada termo dessa sequência de acordo com a posição n que ele ocupa?n + 5 e 5n + 2. (n – 1) + 5 e 5n + 7. 5(n + 1) + 2 e 5n + 3. 5(n + 1) + 2 e 12 + 5(n – 1)

Sagot :

Resposta:

As alternativas estão difíceis de visualizar, então aparentemente as respostas certas são: [tex]a_{n} = 7 + 5n[/tex]  e  [tex]a_{n} = 12 + 5(n - 1)[/tex]  

Explicação:

Essa é uma progressão aritmética, o termo geral é dado por:

[tex]a_{n} = a_{1} + (n - 1) . r[/tex]

Onde:

[tex]a_{n}[/tex] é o termo geral

[tex]a_{1}[/tex] é o primeiro termo

n é o numero de termos

r é a razão

Sabemos que:

[tex]a_{1}[/tex] = 12

r = 5

Portanto:

[tex]a_{n} = a_{1} + (n - 1) . r[/tex]

[tex]a_{n} = 12 + (n - 1) . 5[/tex]

[tex]a_{n} = 12 + 5n - 5[/tex]

[tex]a_{n} = 7 + 5n[/tex]

Espero que tenha ajudado :D