Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Encontre soluções rápidas e confiáveis para suas dúvidas de uma comunidade de especialistas dedicados. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Olá!
Vamos vamos tomar o ponto a montante(chamarei de 1) como o nível superior do reservatório. Este nível está parado e aberto à pressão atmosférica, então [tex]c_1 = 0~m/s[/tex] e [tex]p_1 = 0~Pa[/tex] (efetiva).
O ponto 2 a justante da turbina é considerado o nível superior, também suposto em repouso e utilizando a hipótese de pressão estática, resultando em [tex]c_2=0[/tex] e [tex]p_2 = 0[/tex].
Façamos para a turbina primeiro, aplicando a equação da energia.
[tex]H_t=\dfrac{p_1-p_2}{\gamma_a}+\dfrac{c_1^2-c_2^2}{2g}+(z_1-z_2) - h_{perdas}[/tex]
Como não foi sequer mencionado o tamanho da tubulação, não podemos calcular as perdas hidráulicas, então vamos desprezá-las. A parcela de velocidade também é nula, pois ambas valem zero. A de pressão igualmente, pois estão abertas à atmosfera.
[tex]H_t = z_1-z_2 = 80~mH_2O[/tex]
Calculamos a potência hidráulica(a potência que a água pode fornecer à turbina):
[tex]P_h =\gamma QH_t \\\\P_h = (9810~N/m^3 )\cdot \left[5000~\ell/s\cdot |1 m^3/1000\ell |\right]\cdot (80~m)\\ \\ P_h = 3.924.000 W\\\\ \underline{P_h = 3.924 ~kW}[/tex]
A potência recuperada na turbina é a potência de eixo, pois a máquina não é perfeita. Isto é, descontamos as perdas da potência hidráulica por meio do rendimento:
[tex]\eta = \dfrac{P_e}{P_h}\iff P_e = \eta P_h\\\\ P_e = 0,7\cdot 3.924\\ \\ \boxed{P_{e_T} =2746,8~kW }[/tex]
Veja: a água pode oferecer 3900 kW, mas a turbina só consegue transformar 2750 kW em potência de eixo, sendo o restante perdido(por atrito lateral, choque, no escoamento, por fuga interna em recirculação e etc).
==========
Para a bomba o raciocínio é análogo, só temos as contribuições devido ao nível, pois as velocidades e pressões são iguais, se desprezarmos as perdas. Resulta na mesma altura de 80 metros para a bomba e, consequentemente, a potência hidráulica(isto é, que a bomba deverá fornecer para o líquido) será a mesma: 3924 kW (SE a altura é a mesma e o restante é propriedade do fluido e do escoamento, então Ph realmente é igual).
O que muda é a potência de eixo necessária na bomba. Nessa máquina fornecemos uma potência de eixo e parte dela é perdida ao se converter em energia hidráulica. Então, após descontarmos as perdas da potência de eixo, deveremos ter a potência hidráulica.
[tex]\eta=\dfrac{P_h}{P_e}\iff P_e=\dfrac{P_h}{\eta}\\\\ P_e=\dfrac{3.924}{0,7}\\ \\ \boxed{P_e=5.606~kW}[/tex]
*Obs 1: Veja que a energia recuperada pela turbina é bem inferior à exigida pela bomba, isto é, não conseguiríamos fazer esse sistema se realimentar eternamente(moto perpetuo), como esperamos pela segunda Lei da Termodinâmica.
**Obs 2: Se quiséssemos considerar as perdas, precisaríamos da rugosidade da tubulação(associada ao material que foi fabricada) e de seu comprimento, além de qualquer singularidade(perda de carga local) para computar adequadamente. As perdas distribuídas seriam calculadas pelo Diagrama de Moody, resultando num fator [tex]f[/tex] e, em seguida, aplicando a fórmula [tex]h_p_D=f \dfrac{L}{D} \dfrac{c^2}{2g}[/tex] e as localizadas pela fórmula [tex]h_p =\dfrac{\kappa c^2}{2g}[/tex] onde [tex]\kappa[/tex] é o coeficiente de perda de carga e c é a velocidade do escoamento.
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.