Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.

Calcule o comprimento da mediana am do triângulo abc cujos vértices são os pontos a (0,0), b (3,7) e c (5,-1)

Sagot :

As medianas do triângulo são as distâncias entre os vértices e os pontos médios (vide imagem no final da foto, as medianas são as linhas vermelhas).

No caso da mediana "am", é a distância entre o vértice "a" e o ponto médio entre "b" e "c" (neste caso chamado de "m").

Antes de tudo vamos calcular as coordenadas deste ponto "m":

[tex]x_m=\frac{x_b+x_c}{2}=\frac{3+5}{2}=\frac{8}{2}=4[/tex]

[tex]y_m=\frac{y_b+y_c}{2}=\frac{7+(-1)}{2}=\frac{7-1}{2}=\frac{6}{2}=3[/tex]

Definimos então o ponto m (4,3)

Agora basta calcular a distância entre "a" e "m" para saber a mediana "am":

[tex]am=\sqrt{(x_m-x_a)^2+(y_m-y_a)^2}[/tex]

[tex]am=\sqrt{(4-0)^2+(3-0)^2}[/tex]

[tex]am=\sqrt{4^2+3^2}[/tex]

[tex]am=\sqrt{16+9}[/tex]

[tex]am=\sqrt{25}[/tex]

[tex]am=5[/tex]

Concluímos que a mediana "am" possui um comprimento de 5 unidades de medida.

View image Poissone
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.