Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas dúvidas de maneira rápida e precisa. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.
Sagot :
Sabendo que [tex]\sin^2 x + \cos^2 x = 1[/tex], substituímos o valor do seno...
[tex]\sin^2 x + \cos^2 x = 1 \\\\ \frac{1}{16} + \cos^2 x = 1 \\\\ \cos^2 x = \frac{16}{16} - \frac{1}{16} \\\\ \cos^2 x = \frac{15}{16} \\\\ \boxed{\cos x = \pm \frac{\sqrt{15}}{4}}[/tex]
De acordo com o enunciado, x pertence ao 2° quadrante, portanto, negativo: [tex]\boxed{\cos x = - \frac{\sqrt{15}}{4}}[/tex].
Temos que: [tex]\cos(a - b) = \cos a \times \cos b + \sin a \times \sin b[/tex].
Por fim,
[tex]\cos \left ( x - \frac{\pi}{3} \right ) = \\\\ \cos x \times \cos \left ( \frac{\pi}{3} \right ) + \sin x \times \sin \left ( \frac{\pi}{3} \right ) = \\\\ - \frac{\sqrt{15}}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{\sqrt{3}}{2} = \\\\ \frac{\sqrt{3}}{8} - \frac{\sqrt{15}}{8} = \\\\ \boxed{\boxed{\frac{\sqrt{3} - \sqrt{15}}{8}}}[/tex]
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.