Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Sendo senx=1/4 e π/2<x<π, calcule cos(x-π/3)



Sagot :

Sabendo que [tex]\sin^2 x + \cos^2 x = 1[/tex], substituímos o valor do seno...

 

[tex]\sin^2 x + \cos^2 x = 1 \\\\ \frac{1}{16} + \cos^2 x = 1 \\\\ \cos^2 x = \frac{16}{16} - \frac{1}{16} \\\\ \cos^2 x = \frac{15}{16} \\\\ \boxed{\cos x = \pm \frac{\sqrt{15}}{4}}[/tex]

 

 De acordo com o enunciado, x pertence ao 2° quadrante, portanto, negativo: [tex]\boxed{\cos x = - \frac{\sqrt{15}}{4}}[/tex].

 

 

 Temos que: [tex]\cos(a - b) = \cos a \times \cos b + \sin a \times \sin b[/tex].

 

 

 Por fim,

 

[tex]\cos \left ( x - \frac{\pi}{3} \right ) = \\\\ \cos x \times \cos \left ( \frac{\pi}{3} \right ) + \sin x \times \sin \left ( \frac{\pi}{3} \right ) = \\\\ - \frac{\sqrt{15}}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{\sqrt{3}}{2} = \\\\ \frac{\sqrt{3}}{8} - \frac{\sqrt{15}}{8} = \\\\ \boxed{\boxed{\frac{\sqrt{3} - \sqrt{15}}{8}}}[/tex]

 

 

 

 

 

 

 

Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.