O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
Olá, Alane, boa noite.
[tex]\begin{cases} 2x+3y=9\\x-4y=k \end{cases}[/tex]
Sabemos que o par [tex](x,y)=(3,k^2)[/tex] é solução do sistema acima.
Substituindo a solução na primeira equação temos:
[tex]2x+3y=9 \Rightarrow 2 \cdot 3 + 3k^2 = 9 \Rightarrow 3k^2=3 \Rightarrow k^2=1 \Rightarrow[/tex]
[tex]k = 1 \text{ ou } k = -1[/tex]
Substituindo a solução [tex](x,y)=(3,k^2)[/tex] na segunda equação temos:
[tex]x-4y=k \Rightarrow 3-4k^2=k \Rightarrow -4k^2-k+3=0 \Rightarrow 4k^2+k-3=0[/tex]
Já obtivemos dois valores possíveis para [tex]k[/tex] , que são 1 e -1. Vamos testá-los nesta última equação obtida para sabermos qual deles satisfaz o sistema.
Substituindo [tex]k=1[/tex] na última equação obtemos:
[tex]4k^2+k-3=0 \Rightarrow 4 \cdot 1^2 + 1 -3=5-3=2 \neq0 \text{ (imposs\'ivel)}[/tex]
Substituindo [tex]k=-1[/tex] nesta mesma equação obtemos:
[tex]4k^2+k-3=0 \Rightarrow 4 \cdot (-1)^2 -1 -3=4-4=0 \text{ (ok!)}[/tex]
Portanto, o valor de [tex]k[/tex] que possibilita que [tex](3,k^2)[/tex] seja solução do sistema é [tex]k=-1[/tex]
Alana,
Se (x, k²) é solução do sistema, tem que satisfazer as duas equações. Vamos
2x + 3y = 9 (1)
x - 4y = k (2)
Em (1)
2.3 + 3k² = 9
3k² = 9 - 6 = 3
k² = 3 / 3 = 1 k = raiz quadrada de 1 = + - 1
k1 = 1
k2 = - 1
Em (2)
Para k = 1
3 - 4k² = 1
3 - 4(1) = 1
3 - 1 = 4
2 = 4 ERRADO
Para k = - 1
3 - 4k² = - 1
3 - 4(1) = -1
3 + 1 = 4
4 = 4 CERTO
Então,
k = - 1
RESULTADO FINAL
Ok?
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.