O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Encontre soluções rápidas e confiáveis para suas dúvidas de uma comunidade de especialistas dedicados. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.

A derivada parcial de f (x, y) = x + y e^ x + y em relação a x é:

Sagot :

Resposta:

[tex]e^xy+1[/tex]

Explicação passo a passo:

Bom dia, Vinicius!

Para encontrarmos a derivada parcial de [tex]f(x,y)=x\:+\:y\:e^x+\:y[/tex] em relação a x, devemos tratar y como constante.

[tex]\frac{\partial \:}{\partial \:x}(x) + \frac{\partial \:}{\partial \:x}(ye^x)+\frac{\partial \:}{\partial \:x}(y)\\=1 +ye^x+0\\=e^xy+1[/tex]

Portanto [tex]e^xy+1[/tex] é a derivada parcial de [tex]f(x,y)=x\:+\:y\:e^x+\:y[/tex] em relação a x.

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.