Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Correção ao enunciado:
Seja um número natural N, diferente de zero. Somando-se uma unidade a N, ele passa a ser divisível por 6 e subtraindo uma unidade de N, ele passa a ser divisível por 7. Qual o menor valor possível para N?
Resposta: N = 29.
Explicação passo a passo:
De acordo com o enunciado, existem [tex]k_1,\,k_2[/tex] inteiros tais que
[tex]\left\{\begin{array}{l} N+1=6k_1\\\\ N-1=7k_2\end{array}\right.\\\\ \Longleftrightarrow\quad \left\{\begin{array}{lc} N=6k_1-1&\quad\mathrm{(i)}\\\\ N=7k_2+1&\quad\mathrm{(ii)}\end{array}\right.[/tex]
Igualando as duas equações, devemos ter
[tex]6k_1-1=7k_2+1\\\\ \Longleftrightarrow\quad 6k_1-7k_2=1+1\\\\ \Longleftrightarrow\quad 6k_1-7k_2=2\qquad\mathrm{(iii)}[/tex]
Esta é uma equação diofantina linear de duas variáveis, e tem solução, pois
mdc(6, 7) = 1 e 1 | 2.
Utilizando o algoritmo de Euclides, podemos escrever
[tex]7=6+1\quad\Longleftrightarrow\quad 1=-6+7[/tex]
Então, temos
[tex]6\cdot (-1)-7\cdot (-1)=1[/tex]
Multiplicando os dois lados por 2, obtemos
[tex]6\cdot (-2)-7\cdot (-2)=2[/tex]
Logo, o par [tex](k_1,\,k_2)=(-2,\,-2)[/tex] é uma solução para a equação (iii).
Para encontrarmos a solução geral, vamos somar e subtrair um múltiplo comum e 6 e 7. Como mmc(6, 7) = 42, temos
[tex]\Longleftrightarrow\quad 6\cdot (-2)+42q-42q-7\cdot (-2)=2\\\\ \Longleftrightarrow\quad 6\cdot(-2+7q)-7\cdot (6q-2)=2[/tex]
A solução geral é
[tex](k_1,\,k_2)=(-2+7q,\,6q-2),\qquad\mathrm{com~}q\in\mathbb{Z}.[/tex]
Substituindo em uma das equações para o número N, temos
[tex]\Longrightarrow\quad N=6\cdot (-2+7q)-1\\\\ \Longleftrightarrow\quad N=-12+42q-1\\\\ \Longleftrightarrow\quad N=42q-13,\qquad\mathrm{com~}q\in\mathbb{Z}.[/tex]
O menor valor possível para N natural é obtido para q = 1:
[tex]\Longrightarrow\quad N=42\cdot (1)-13\\\\ \Longleftrightarrow\quad N=42-13\\\\ \Longleftrightarrow\quad N=29\quad\longleftarrow\quad\mathsf{resposta.}[/tex]
Obs.: Essa tarefa também pode ser resolvida usando o Teorema Chinês dos Restos aplicado ao sistema de congruências lineares abaixo:
[tex]\left\{\begin{array}{lc} N\equiv -1&\quad(\mathrm{mod~}6)\\\\ N\equiv 1&\quad(\mathrm{mod~}7)\end{array}\right.[/tex]
que possui solução, pois mdc(6, 7) = 1.
Dúvidas? Comente.
Bons estudos! :-)
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.