O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Com o estudo sobre integral tripla temos como resposta letra b)2
Integral tripla
Uma função é contínua se seu gráfico puder ser representado por meio de uma linha contínua, isto é, se não possuir pontos de descontinuidade. Uma função será descontínua se existirem pontos nos quais um pequena variação na variável independente produzir um salto nos valores da variável dependente.
Seja f uma função definida em [a , b] e L um número real. Dizemos que
[tex]\sum _{i=1}^n\:f\:\left(c_i\right)\Delta x_i[/tex] tende a L, quando [tex]max\Delta x_i\:- > \:0[/tex] e indicamos por
[tex]lim_{max\Delta x_i\:- > \:0}\sum _{i=1}^n\:f\left(c_i\right)\Delta x_i=L\:\\[/tex]. Se para todo å > 0 , existir ä > 0 , que
só depende de å mas não da particular escolha dos [tex]c_i[/tex], tal que
[tex]{\displaystyle \lfloor \sum \:_{i=1}^n\:f\:\left(c_i\right)\Delta x_i\:-L\:\\\rfloor }[/tex] < å para toda partição de [a , b] , com [tex]max\Delta x_i < \delta[/tex].
O número real L quando existe , é único , e é chamado de integral definida de f no intervalo [a , b] . Indicaremos o número L por: [tex]L=\int _a^b\:f\left(x\right)dx[/tex]. Podemos generalizar essa ideia para uma integral tripla e resolvermos o exercício proposto.
[tex]\int _0^1\int _0^z\int _0^{x+z}12xz\:dydxdz[/tex][tex]=\int _0^{x+z}12xzdy[/tex] [tex]=12xz(x+z)[/tex] [tex]=\int _0^1\int _0^z12xz\left(x+z\right)dxdz[/tex][tex]=\int _0^110z^4dz[/tex] =2
Saiba mais sobre integral tripla: https://brainly.com.br/tarefa/49521938
#SPJ1
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.