Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

1) Ache uma equação da reta tangente à curva y = x²-3x no ponto P(2,-2).​

Sagot :

✅ Após resolver os cálculos, concluímos que a equação da reta tangente ao gráfico da referida função polinomial do segundo grau no referido ponto dado é:

      [tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf t: y = x - 4\:\:\:}}\end{gathered}$}[/tex]

Sejam os dados:

            [tex]\Large\begin{cases} y = x^{2} - 3x\\P(2, -2)\end{cases}[/tex]

Sabendo que:

                 [tex]\Large\displaystyle\text{$\begin{gathered} y = f(x)\end{gathered}$}[/tex]

Então, temos:

             [tex]\Large\begin{cases} f(x) = x^{2} - 3x\\P(2, -2)\end{cases}[/tex]

Para calcular a reta tangente que toca o gráfico da referida função pelo ponto "P" devemos utilizar a forma "ponto/declividade" da reta que é:

[tex]\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}[/tex]         [tex]\Large\displaystyle\text{$\begin{gathered} y - y_{P} = m_{t}\cdot(x - x_{P})\end{gathered}$}[/tex]

Sendo:

[tex]\Large\displaystyle\text{$\begin{gathered} \bf II\end{gathered}$}[/tex]                  [tex]\Large\displaystyle\text{$\begin{gathered} y_{P} = f(x_{P})\end{gathered}$}[/tex]

Além disso sabemos também que o coeficiente angular da reta tangente é numericamente igual à derivada primeira da função no referido ponto, ou seja:

[tex]\Large\displaystyle\text{$\begin{gathered} \bf III\end{gathered}$}[/tex]                  [tex]\Large\displaystyle\text{$\begin{gathered} m_{t} = f'(x_{P})\end{gathered}$}[/tex]

Substituindo "II" e "III" na equação "I", temos:

[tex]\Large\displaystyle\text{$\begin{gathered} \bf IV\end{gathered}$}[/tex]     [tex]\Large\displaystyle\text{$\begin{gathered} y - f(x_{P}) = f'(x_{P})\cdot(x - x_{P})\end{gathered}$}[/tex]

Substituindo os valores na equação "IV", temos:

   [tex]\Large\displaystyle\text{$\begin{gathered} y - (-2) = \left[2\cdot1\cdot2^{2 - 1} - 1\cdot3\cdot2^{1 - 1}\right]\cdot(x - 2)\end{gathered}$}[/tex]

            [tex]\Large\displaystyle\text{$\begin{gathered} y + 2 = \left[4 - 3 \right]\cdot(x - 2)\end{gathered}$}[/tex]

            [tex]\Large\displaystyle\text{$\begin{gathered} y + 2 = 1\cdot(x - 2)\end{gathered}$}[/tex]

            [tex]\Large\displaystyle\text{$\begin{gathered} y + 2 = x - 2\end{gathered}$}[/tex]

                    [tex]\Large\displaystyle\text{$\begin{gathered} y = x - 2 - 2\end{gathered}$}[/tex]

                    [tex]\Large\displaystyle\text{$\begin{gathered} y = x - 4\end{gathered}$}[/tex]

✅ Portanto, a reta tangente é:

               [tex]\Large\displaystyle\text{$\begin{gathered} t: y = x - 4\end{gathered}$}[/tex]

[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]

Saiba mais:

  1. https://brainly.com.br/tarefa/35233421
  2. https://brainly.com.br/tarefa/11953305
  3. https://brainly.com.br/tarefa/23341040
  4. https://brainly.com.br/tarefa/29979962
  5. https://brainly.com.br/tarefa/13153341
  6. https://brainly.com.br/tarefa/46571375
  7. https://brainly.com.br/tarefa/2633796
  8. https://brainly.com.br/tarefa/52481359
  9. https://brainly.com.br/tarefa/11718740
  10. https://brainly.com.br/tarefa/21037584
  11. https://brainly.com.br/tarefa/12656648
  12. https://brainly.com.br/tarefa/52803957

[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}[/tex]

View image solkarped

Obs: Levarei em consideração que tenha noção sobre diferenciação de funções.

seja f(x) = y = x² - 3x um polinômio de grau 2, e

Lembrando que a derivada de um polinômio é a somatória das derivadas de cada termo, de modo que:

d(x^n)/dx = n.x^(n-1)

Temos que a derivada de f(x) será:

f'(x) = 2x - 3

No caso queremos a reta tangente no ponto (x, y) = (2, -2).

a inclinação da reta tangente de f(x) nesse ponto será dado por f'(2).

f'(2) = 2.2 - 3 = 1

Com a tangente da reta naquele ponto e o próprio ponto, podemos usar a lei de formação da reta para determinar:

(y - y0) = m(x -x0)

m = 1

(x0, y0) = (2, -2)

y + 2 = x - 2

y = x - 4

g(x) = y = x - 4 é a equação da reta tangente de f(x) no ponto (2, -2).

Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.