Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
Explicação passo a passo:
- Redução ao absurdo:
Suponha que exista [tex]x[/tex] inteiro que satisfaz a hipótese dada:
[tex]\begin{array}{l} x^2\equiv 35\quad(\mathrm{mod~100})\qquad\mathrm{(i)}\\\\ \Longleftrightarrow\quad x^2-35=100k_1,\quad\mathrm{para~algum~}k_1\in\mathbb{Z}\\\\ \Longleftrightarrow\quad x^2=100k_1+35\\\\ \Longleftrightarrow\quad x^2=5\cdot (20k_1+7)\\\\ \Longrightarrow\quad 5\,|\,x^2\end{array}[/tex]
e como 5 é primo, concluímos que
[tex]\begin{array}{l} \Longrightarrow\quad 5\,|\,x\\\\ \Longleftrightarrow\quad x=5k_2,\quad\mathrm{para~algum~}k_2\in\mathbb{Z}\\\\ \Longrightarrow\quad x^2=(5k_2)^2\\\\ \Longleftrightarrow\quad x^2=25k_2^2\\\\ \Longrightarrow\quad 25\,|\,x^2\qquad\mathrm{(ii)}\end{array}[/tex]
Então [tex]x^2[/tex] deve ser um múltiplo de 25, e consequentemente só temos as seguintes possibilidades:
[tex]\Longrightarrow\quad \left\{\begin{array}{ll} x^2\equiv 0\quad(\mathrm{mod~100}),&\quad\mathrm{se~}k_2~\mathrm{for~par}\\\\ x^2\equiv 25\quad(\mathrm{mod~100}),&\quad\mathrm{se~}k_2~\mathrm{for~\acute{i}mpar}\end{array}\right.[/tex]
Isto significa que os dois últimos dígitos de [tex]x^2[/tex] são 00 ou 25, o que contradiz a hipótese (i).
Isso fica evidente ao tomarmos o resíduo de [tex]x^2[/tex] módulo 25:
[tex]\begin{array}{l}x^2=100k_1+35\\\\ \Longleftrightarrow\quad x^2=100k_1+25+10\\\\ \Longleftrightarrow\quad x^2=25\cdot (4k_1+1)+10\\\\ \Longrightarrow\quad x^2\equiv 10\quad(\mathrm{mod~}25)\end{array}[/tex]
contrariando (ii), o fato de que [tex]x^2[/tex] deve ser múltiplo de 25.
Logo, não existe inteiro x tal que x² ≡ 35 (mod 100).
Dúvidas? Comente.
Bons estudos!
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.