Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Junte-se à nossa plataforma de perguntas e respostas e conecte-se com profissionais prontos para fornecer respostas precisas para suas dúvidas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.

(Fatec-SP) Nesta figura, a medida do segmento AD é igual a:

(alternativas e figura na imagem)


FatecSP Nesta Figura A Medida Do Segmento AD É Igual Aalternativas E Figura Na Imagem class=

Sagot :

Olhando a imagem, sabemos que :
AD é raio e AF também é raio, logo AD = AF ;
AC = AF + CF  e  CF = CB = a/2 ;

Daí, façamos pitagoras no triangulo ABC :

[tex]\displaystyle \sf AC^2 = AB^2 + CB^2 \\\\ AC^2 = a^2+\left(\frac{a}{2}\right)^2 \\\\\\ AC^2 = a^2+\frac{a^2}{4} \\\\ AC^2 = \frac{5a^2}{4} \\\\\ AC = \frac{a\sqrt{5}}{2}[/tex]

Dai :

[tex]\displaystyle \sf AC = AF + CF \\\\ \frac{a\sqrt{5}}{2}=AF+\frac{a}{2} \\\\\\ AF = \frac{a\sqrt{5}-a}{2} \to AF = \frac{a(\sqrt{5}-1)}{2} \\\\\\\ \underline{\text{Mas AF = AD. Portanto }}: \\\\ \huge\boxed{\sf AD = \frac{a(\sqrt{5}-1)}{2} \ }\checkmark[/tex]

letra d