Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

(Fatec-SP) Nesta figura, a medida do segmento AD é igual a:

(alternativas e figura na imagem)

FatecSP Nesta Figura A Medida Do Segmento AD É Igual Aalternativas E Figura Na Imagem class=

Sagot :

Olhando a imagem, sabemos que :
AD é raio e AF também é raio, logo AD = AF ;
AC = AF + CF  e  CF = CB = a/2 ;

Daí, façamos pitagoras no triangulo ABC :

[tex]\displaystyle \sf AC^2 = AB^2 + CB^2 \\\\ AC^2 = a^2+\left(\frac{a}{2}\right)^2 \\\\\\ AC^2 = a^2+\frac{a^2}{4} \\\\ AC^2 = \frac{5a^2}{4} \\\\\ AC = \frac{a\sqrt{5}}{2}[/tex]

Dai :

[tex]\displaystyle \sf AC = AF + CF \\\\ \frac{a\sqrt{5}}{2}=AF+\frac{a}{2} \\\\\\ AF = \frac{a\sqrt{5}-a}{2} \to AF = \frac{a(\sqrt{5}-1)}{2} \\\\\\\ \underline{\text{Mas AF = AD. Portanto }}: \\\\ \huge\boxed{\sf AD = \frac{a(\sqrt{5}-1)}{2} \ }\checkmark[/tex]

letra d

Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.