O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Descubra um vasto conhecimento de especialistas em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
Explicação passo a passo:
Demonstrar a identidade trigonométrica:
tg² x · cossec² x = 1 + tg² x
para cos x ≠ 0 e sen x ≠ 0.
Demonstração:
Reescreva o lado direito, aplicando as definições de tangente e cossecante. Lembrando que
[tex]\mathrm{tg\,}x=\dfrac{\mathrm{sen\,}x}{\cos x}\quad\mathrm{e}\quad\mathrm{cossec\,}x=\dfrac{1}{\mathrm{sen\,}x}[/tex]
Portanto, temos
[tex]\begin{array}{l}\mathrm{tg^2\,}x\cdot \mathrm{cossec^2\,}x\\\\ =\left(\dfrac{\mathrm{sen\,}x}{\cos x}\right)^2\cdot \Big(\dfrac{1}{\mathrm{sen\,}x}\Big)^2\\\\ =\dfrac{\mathrm{sen^2\,}x}{\cos^2 x}\cdot \dfrac{1}{\mathrm{sen^2\,}x}\\\\ =\dfrac{1}{\cos^2 x}\end{array}[/tex]
Reescreva o numerador [tex]1=\cos^2 x+\mathrm{sen^2\,}x,[/tex] que é a relação trigonométrica fundamental, e a expressão acima fica
[tex]\begin{array}{l}=\dfrac{\cos^2 x+\mathrm{sen^2\,}x}{\cos^2 x}\\\\ =\dfrac{\cos^2 x}{\cos^2 x}+\dfrac{\mathrm{sen^2\,}x}{\cos^2 x}\\\\ =1+\left(\dfrac{\mathrm{sen\,}x}{\cos x}\right)^2\\\\ =1+\mathrm{tg^2\,}x\qquad\quad\blacksquare\end{array}[/tex]
como queríamos.
Dúvidas? Comente.
Bons estudos! :-)
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.