Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Demonstre as seguintes identidades trigonométricas:
.....
tg2 x . cossec2 x = 1 + tg2 x , para cos2 x ≠ 0 e sen2 x ≠ 0

Me ajudem, por favor.

Sagot :

Lukyo

Explicação passo a passo:

Demonstrar a identidade trigonométrica:

     tg² x · cossec² x = 1 + tg² x

para cos x ≠ 0 e sen x ≠ 0.

Demonstração:

Reescreva o lado direito, aplicando as definições de tangente e cossecante. Lembrando que

     [tex]\mathrm{tg\,}x=\dfrac{\mathrm{sen\,}x}{\cos x}\quad\mathrm{e}\quad\mathrm{cossec\,}x=\dfrac{1}{\mathrm{sen\,}x}[/tex]

Portanto, temos

     [tex]\begin{array}{l}\mathrm{tg^2\,}x\cdot \mathrm{cossec^2\,}x\\\\ =\left(\dfrac{\mathrm{sen\,}x}{\cos x}\right)^2\cdot \Big(\dfrac{1}{\mathrm{sen\,}x}\Big)^2\\\\ =\dfrac{\mathrm{sen^2\,}x}{\cos^2 x}\cdot \dfrac{1}{\mathrm{sen^2\,}x}\\\\ =\dfrac{1}{\cos^2 x}\end{array}[/tex]

Reescreva o numerador [tex]1=\cos^2 x+\mathrm{sen^2\,}x,[/tex] que é a relação trigonométrica fundamental, e a expressão acima fica

     [tex]\begin{array}{l}=\dfrac{\cos^2 x+\mathrm{sen^2\,}x}{\cos^2 x}\\\\ =\dfrac{\cos^2 x}{\cos^2 x}+\dfrac{\mathrm{sen^2\,}x}{\cos^2 x}\\\\ =1+\left(\dfrac{\mathrm{sen\,}x}{\cos x}\right)^2\\\\ =1+\mathrm{tg^2\,}x\qquad\quad\blacksquare\end{array}[/tex]

como queríamos.

Dúvidas? Comente.

Bons estudos! :-)