O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
A reta é tangente à circunferência, alternativa a.
Intersecção entre uma reta e uma circunferência
Dadas uma reta e uma circunferência no plano xy, temos que, a intersecção dessas duas formas geométricas é formada por um único ponto, por dois pontos distintos ou por nenhum ponto. Nesse caso, temos que:
- Quando a intersecção é vazia, a reta possui todos os pontos na parte externa da circunferência.
- Se a intersecção for apenas um ponto, dizemos que a reta é tangente a circunferência.
- Quando temos dois pontos distintos na intersecção, chamamos a reta de reta secante a circunferência.
Dessa forma, para analisarmos a alternativa correta, devemos primeiro calcular a intersecção das duas curvas. Substituindo x = 2y na equação da circunferência, temos que:
[tex]4y^2 + y^2 - 10y + 5 = 0[/tex]
[tex]5y^2 - 10y + 5 = 0[/tex]
[tex]y^2 - 2y + 1 = 0 [/tex]
[tex]\Delta = 4 - 4 = 0[/tex]
[tex]y = \dfrac{2 \pm 0}{2} = 1[/tex]
Substituindo o valor y = 1 na equação da reta, temos que, x = 2, ou seja, a intersecção possui apenas um ponto (2,1). Podemos afirmar que a reta é tangente a circunferência.
Para mais informações sobre intersecção entre reta e circunferência, acesse: https://brainly.com.br/tarefa/6275369
#SPJ1
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.