O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Resposta:
[tex]\dfrac{1}{6}[/tex]
Explicação passo a passo:
Reorganizando as expressões, são dadas a curva [tex]y=-x^2+3[/tex] e a reta [tex]y=-x+3[/tex], que podem ser visualizadas na imagem anexada.
Percebe-se que, para calcular a área limitada pela curva e pela reta (a área entre elas), basta calcular a integral definida de um ponto de intersecção a outro, da curva, e subtrair, deste valor, a da reta.
Encontrando as intersecções:
[tex]-x^2+3=-x+3\\\\-x^2=-x\\\\x^2-x=0\\\\x(x-1)=0\\\\x_1=0\\x_2=1[/tex]
Calculando a área [tex]S[/tex]:
[tex]S=\int\limits^{1}_{0} {-x^2+3} \, dx -\int\limits^{1}_{0} {-x+3} \,dx\\\\\\S=\int\limits^{1}_{0} {-x^2+3-(-x+3)} \, dx\\\\\\S=\int\limits^{1}_{0} {-x^2+3+x-3} \, dx\\\\S=\int\limits^{1}_{0} {-x^2+3+x-3} \, dx\\\\\\S=\int\limits^{1}_{0} {-x^2+x} \, dx=\left[-\dfrac{1}{3}x^3+\dfrac{1}{2}x^2\right]^{1}_{0}=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}[/tex]
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.