Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Questão 13 - O lucro de uma empresa é dado per L(x) = 50(10- x)(x - 2), onde x é a quantidade vendida. Podemos afirmar que: O a) o lucro é positivo qualquer que seja x. b) o lucro é positivo para x maior do que 10. co lucro é positivo para x entre 2 e 10. d) o lucro é máximo para x igual a 10.​

Sagot :

Resposta:

Alternativa C

Explicação passo-a-passo:

Vamos analisar o L(x) como 0, ou seja, sem lucro algum

50(10 - x)(x - 2) = 0

(500 - 50x)(x - 2) = 0

500x - 1000 - 50x² + 100x = 0

-50x² + 600x - 1000 = 0

-x² + 12x - 20 = 0

[tex]x = \frac{ - 12 + - \sqrt{ {12}^{2} - 4 \times ( - 1) \times ( - 20) } }{2 \times ( - 1)} \\ \\ x = \frac{ - 12 + - \sqrt{144 - 80} }{ - 2} \\ \\ x = \frac{ - 12 + - \sqrt{64} }{ - 2} \\ \\ x 1= \frac{ - 12 + 8}{ - 2} = \frac{ - 4}{ - 2} = 2 \\ \\ x2 = \frac{ - 12 - 8}{ - 2} = \frac{ - 20}{ - 2} = 10[/tex]

Como a função é decrescente (x < 0), o lucro será positivo para x entre 2 e 10.

Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.