O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
[tex]X=\left[\begin{array}{cc}2&-1\\1&-1\end{array}\right][/tex]
[tex]I[/tex] é a matriz identidade. Portanto:
[tex]I^2=\left[\begin{array}{cc}1&0\\0&1\end{array}\right] \cdot \left[\begin{array}{cc}1&0\\0&1\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right] = I[/tex]
Ressalte-se que, em geral, a matriz identidade [tex]I[/tex] tem a seguinte propriedade:
[tex]I \times ... \times I=I^n=I[/tex]
[tex]XY=I^2 \Rightarrow \left[\begin{array}{cc}2&-1\\1&-1\end{array}\right]\left[\begin{array}{cc}y_1&y_2\\y_3&y_4\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right] \Rightarrow[/tex]
[tex]\begin{cases} 2y_1-y_3=1\\2y_2-y_4=0\\y_1-y_3=0\\y_2-y_4=1 \end{cases}[/tex]
[tex]y_1=y_3 \Rightarrow 2y_3-y_3=1 \Rightarrow y_3=1 \Rightarrow y_1=1[/tex]
[tex]2y_2=y_4 \Rightarrow y_2-2y_2=1 \Rightarrow -y_2=1 \Rightarrow y_2=-1 \Rightarrow y_4=-2[/tex]
Portanto:
[tex]Y=\left[\begin{array}{cc}1&-1\\1&-2\end{array}\right][/tex]
Como [tex]XY=I \Rightarrow[/tex] [tex]Y[/tex] é chamada de matriz inversa de [tex]X[/tex] e usa-se a notação:
[tex]Y=X^{-1}[/tex]
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.