Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
A variância populacional do grupo 1 é 28,67 e a do grupo 2 é 1,67.
Variância
Suponha que tenhamos um conjunto de dados x1, x2, ...., xn com n elementos referente a uma população. Sendo x a média aritmética de todos os elementos dessa população, a fórmula utilizada para calcular a variância populacional é dada por:
[tex]Var = \dfrac{(x_1 - x)^2 + (x_2 - x)^2 + \cdots +(x_n - x)^2}{n}[/tex]
Cálculo para o grupo 1
Primeiro vamos calcular a média aritmética do grupo 1, temos que:
[tex]x = \dfrac{1+2+2+12+12+13}{6}= 7[/tex]
Agora utilizamos a fórmula de variância populacional:
[tex]Var = \dfrac{(1-7)^2 + (2-7)^2 +(2-7)^2 +(12-7)^2 +(12-7)^2 +(13-7)^2 }{6} =\\Var = \dfrac{172}{6} \\Var = 28,67[/tex]
Cálculo para o grupo 2
Agora vamos calcular a média aritmética da população composta pelo grupo 2:
[tex]x = \dfrac{5+6+7+7+8+9}{6}= 7[/tex]
Pela fórmula da variância populacional, temos que:
[tex]Var = \dfrac{(5-7)^2 + (6-7)^2 +(7-7)^2 +(7-7)^2 +(8-7)^2 +(9-7)^2 }{6} =\\Var = \dfrac{10}{6} \\Var = 1,67[/tex]
Para mais informações sobre variância populacional, acesse: https://brainly.com.br/tarefa/22469481

Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.