O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma.
Sagot :
Resposta:
[tex]\left ( -1,-1 \right )[/tex] e [tex]\left ( \frac{17}{5},\frac{39}{5} \right )[/tex]
Explicação passo a passo:
Primeiramente, a equação que você forneceu não é de uma circunferência, e está faltando um parênteses, imagino quer por erro de digitação. Acredito que a equação desta questão fosse [tex](2-x)^2+(3-y)^2=25[/tex].
Para encontrar os pontos onde a reta corta a circunferência, devemos buscar a interseção entre a reta e a circunferência, que são os pontos nos quais tanto a equação da reta como a da circunferência são atendidas, para isso basta resolver o sistema:
[tex]\left \{ y=2x+1\atop (2-x)^2+(3-y)^2=25 \right.[/tex]
(eu não alinhar a equação de cima à esquerda, desculpe...)
Esse sistema assusta um pouco, mas não é tão difícil assim, perceba que na primeira equação ele ja te dá o y isolado, então podemos substituir isso na segunda equação, e ficaremos com:
[tex](2-x)^2+(3-(2x+1))^2=25[/tex]
Certo, agora é uma questão de álgebra, vamos expandir e manipular o lado esquerdo da expressão:
[tex](2-x)^2+(3-(2x+1))^2=(2-x)^2+(3-2x-1)^2[/tex]
[tex](2-x)^2+(3-2x-1)^2=4-4x+x^2+4-8x+4x^2[/tex]
[tex]4-4x+x^2+4-8x+4x^2=5x^2-12x+8[/tex]
[tex]5x^2-12x+8=25[/tex]
[tex]5x^2-12x-17=0[/tex]
(não esqueça que o 25 da quarta linha veio da equação ali de cima, era o lado direito da equação!)
Note que terminamos com uma equação quadrática, ou seja, podemos usar Bhaskara para encontrar os valores de x. Vou pular esta etapa mais simples, e partir para os resultados, que seriam [tex]x_1=-1[/tex] ou [tex]x_2=\frac{17}{5}[/tex] .
A resposta pediu os pontos, então precisamos encontrar o valor de x e y deles. Agora que temos os valores de x de cada ponto (são 2 pontos que buscamos, porque encontramos 2 valores para x), precisamos substituí-lo em alguma das equações do nosso sistema (aquele lá de cima!). A primeira equação [tex](y=2x+1)[/tex] parece bem mais simples que a segunda, vamos usá-la:
[tex]y_1=2\cdot (-1)+1\Rightarrow y_1=-1[/tex]
[tex]y_2=2\cdot \frac{17}{5}+1\Rightarrow y_2=\frac{39}{5}[/tex]
Conseguimos o valor de x e y de cada ponto, então a nossa resposta seria:
[tex]P_1=(-1,-1)[/tex] e [tex]P_2=\left ( \frac{17}{5},\frac{39}{5} \right )[/tex]
Exercício um pouco trabalhoso, os pontos chave da resolução são:
- Entender que os pontos que buscamos são as soluções do sistema formado pelas duas equações
- Saber resolver um sistema envolvendo uma equação linear e uma equação quadrática
- Saber que para cada valor de x que atende ao sistema existe um valor de y correspondente
Caso tenha dúvidas ou precisa de esclarecimento, pode mandar!
Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.