O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

Usamos os limites para descrever o comportamento de uma função a medida que o argumento da função tende a um determinado valor. O conceito de limite e usado para definir outros conceitos de limite e usado para definir outros conceitos, como derivada e continuidade de funções. Sobre o exposto,assinale a alternativa correta; A)Quando calculamos limites, podemos encontrar indeterminacoes, uma indeterminação representa um unico valor real B)nao ha soluções para problemas envolvendo limites. C)O limite de uma função da forma f(x)=ax+b,quando x tende a 0 é b. D) Do teorema de confronto, podemos concluir que se lim f(x)=0 com x->a e lim g(x)=infinito com x->a entao lim f(x). g(x)=0

Sagot :

Resposta:

Alternativa C

Explicação passo a passo:

A)Quando calculamos limites, podemos encontrar indeterminacoes, uma indeterminação representa um unico valor real

Falso, uma indeterminação pode representar que não há limite

B)nao ha soluções para problemas envolvendo limites.

Falso, há sim soluções

C)O limite de uma função da forma f(x)=ax+b,quando x tende a 0 é b.

Verdade, uma vez que a • 0 = 0, então o limite dessa função com x tendendo a zero, tenderia à b.

D) Do teorema de confronto, podemos concluir que se lim f(x)=0 com x->a e lim g(x)=infinito com x->a entao lim f(x). g(x)=0

Falso, não se pode realizar operações com infinito como se fosse um número real. infinito vezes zero é uma indeterminação

Boa tarde =)

[tex]\frak{Scorpionatico}[/tex]

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.