Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Resposta:
A mediana AM do triângulo ABC mede 5.
Explicação passo a passo:
A mediana AM é o seguimento de reta que liga o vértice A do triângulo ABC ao ponto médio do lado oposto a A, ou seja, ao ponto médio do lado BC.
Para calcular o comprimento da mediana AM, devemos encontrar as coordenadas de M e, em seguida, calcular a distância entre os pontos A e M.
- Passo 1. Calcular as coordenadas de M:
Como M é o ponto médio do seguimento BC, temos que, as suas coordenadas são dadas pelas somas das coordenadas de B e C dividido por dois, ou seja:
M = ((2+6)/2, (1+5)/2) = (4, 3)
- Passo 2. Calcular a distância entre os pontos A e M:
Utilizando a fórmula da distância entre dois pontos, podemos escrever:
[tex]d(A,M)=\sqrt{(x_1 -x_2)^2 + (y_1 - y_2)^2} = \sqrt{(4-0)^2 + (3-0)^2} = \sqrt{16+9} = \sqrt{25}=5[/tex]
O comprimento da mediana AM é igual a 5.
Para mais informações sobre mediana de um triângulo, consulte:
https://brainly.com.br/tarefa/51431961
Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.