O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.

a soma 1,333...+0,1666... em fraçao

Sagot :

Celio

Olá, Victor, boa noite.

 

Trata-se da soma de duas dízimas periódicas. Precisamos encontrar as frações geratrizes de cada uma para escrever o resultado em forma de uma fração.

 

[tex]1,333...=1+0,333...=1+\frac39=1+\frac13=\frac{3+1}{3}=\frac43[/tex]

 

[tex]0,1666...=\frac{1,6666...}{10}=\frac{1+0,666...}{10}=\frac{1+\frac69}{10}=\frac1{10}(1+\frac69)=\frac1{10}(\frac{9+6}9)=[/tex]

[tex]=\frac{15}{90}=\frac16[/tex]

 

Somando as duas frações fica:

 

[tex]=\frac43+\frac16=\frac{8+1}{6}=\frac96=\frac{3}{2}[/tex]

 

A "regrinha básica" para se encontrar a fração geratriz de uma dízima periódica é sempre tentar escrevê-la como um número do tipo [tex]n + 0,111...[/tex] ou [tex]n + 0,222...[/tex], etc. porque:

 

[tex]0,111... = \frac19, 0,222... =\frac29, ..., 0,888... = \frac89[/tex]

 

A partir daí é só operar algebricamente as frações até chegar a uma fração final do tipo [tex]\frac{a}b[/tex].

 

Veja que, em particular, [tex]0,999... = \frac99 = 1[/tex].

 

Assim, há uma segunda forma mais rápida de resolver o problema:

 

[tex]1,3333...+0,1666...=1,4999...=\frac{1}{10} \times 14,999...=[/tex]

 

[tex]\frac{1}{10} \times (14+0,999...)=\frac{1}{10} \times (14+\frac99)=\frac{1}{10} \times 15=\frac{3}{2}[/tex]