Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Olá, Hiang.
Se [tex]u,v,w[/tex] são autovetores e [tex]y_1,y_2,y_3[/tex] são autovalores então satisfazem as seguintes identidades:
[tex]Tu=y_1u\\Tv=y_2v\\Tw=y_3w[/tex]
Observação: autovetores e autovalores são vetores e valores que possuem a propriedade especial de não alterarem a direção de um vetor após aplicada a transformação linear T. Voltemos.
Vou fazer o início dos cálculos para o autovetor [tex]u[/tex] e para o autovalor [tex]y_1.[/tex]
Os cálculos para os outros dois autovalores e autovetores é análogo.
[tex]Tu=y_1u \Rightarrow \left[\begin{array}{ccc}t_{11}&t_{12&t_{13\\t_{21&t_{22&t_{23\\t_{31&t_{32&t_{33\end{array}\right] \left[\begin{array}{c}1\\-1\\2\end{array}\right] = 4 \left[\begin{array}{c}1\\-1\\2\end{array}\right]=\left[\begin{array}{c}4\\-4\\8\end{array}\right][/tex]
Fazendo o mesmo para os autovetores [tex]v,w[/tex] e seus respectivos autovalores associados [tex]y_2,y_3[/tex], vamos obter um sistema linear 3x3 para [tex]t_{11},t_{12},t_{13},[/tex] outro para [tex]t_{21},t_{22},t_{23},[/tex] e outro para [tex]t_{31},t_{32},t_{33}[/tex].
Resolvidos os três sistemas 3x3 e, ao final, encontrados os valores de [tex]t_{11},t_{12},...,t_{32},t_{33},[/tex] está encontrada, portanto, a matriz T, chamada de operador linear.
Calcule agora u - 2v + 3w (adição trivial de vetores multiplicados por escalares).
Por último, T(u - 2v + 3w) é a multiplicação de matriz por vetor Tz, onde z = u - 2v + 3w.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.