O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
[tex]\large\boxed{\begin{array}{l}\displaystyle\sf\int \sqrt{x}\,\ln(x)\,dx\\\sf u=\ln(x)\longrightarrow du=\dfrac{1}{x}\,dx\\\\\sf dv=\sqrt{x}\longrightarrow v=\dfrac{2}{3}x^{\frac{3}{2}}\\\\\displaystyle\sf\int\sqrt{x}\,\ln(x)\,dx=\dfrac{2}{3}x^{\frac{3}{2}}\ln(x)-\int\dfrac{2}{3}x^{\frac{3}{2}}\cdot\dfrac{1}{x}\,dx\\\\\displaystyle\sf\int\sqrt{x}\,\ln(x)\,dx=\dfrac{2}{3}x^{\frac{3}{2}}-\dfrac{2}{3}\int x^{\frac{1}{2}}\,dx\end{array}}[/tex]
[tex]\Large\boxed{\begin{array}{l}\displaystyle\sf\int\sqrt{x}\,\ln(x)\,dx=\dfrac{2}{3}x^{\frac{3}{2}}\ln(x)-\dfrac{2}{3}\cdot\dfrac{2}{3}x^{\frac{3}{2}}+k\\\boxed{\boxed{\boxed{\boxed{\displaystyle\sf\int\sqrt{x}\,\ln(x)\,dx=\dfrac{2}{3}x^{\frac{3}{2}}\ln(x)-\dfrac{4}{9}x^{\frac{3}{2}}+k}}}}\end{array}}[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Visite o Sistersinspirit.ca novamente para obter as respostas mais recentes e informações dos nossos especialistas.