O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade de especialistas dedicados em nossa plataforma de perguntas e respostas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
[tex]\lim_{x \to 2} \dfrac{\sqrt{2x^2+3x+2}-4}{8-4x}\\\\[/tex]
Racionalize o numerador:
[tex]\lim_{x \to 2} \dfrac{\sqrt{2x^2+3x+2}-4}{8-4x} \cdot \dfrac{\sqrt{2x^2+3x+2}+4}{\sqrt{2x^2+3x+2}+4}\\\\\lim_{x \to 2} \dfrac{2x^2+3x+2-4^2}{(8-4x)(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{2x^2+3x-14}{(8-4x)(\sqrt{2x^2+3x+2}+4)}\\\\[/tex]
Fatore o numerador e (8-4x):
[tex]2x^2+3x-14=0\\\\x=\dfrac{-3\pm \sqrt{3^2-4 \cdot 2 \cdot (-14)}}{2 \cdot 2} = \dfrac{-3\pm\sqrt{9-4 \cdot (-28)}}{4} = \dfrac{-3\pm\sqrt{121}}{4}\\\\x_1 = \dfrac{-3+11}{4} = 2\\\\x_2 = \dfrac{-3-11}{4} = \dfrac{-14}{4} = -\dfrac{7}{2}[/tex]
[tex]\lim_{x \to 2} \dfrac{2\left(x+\dfrac{7}{2}\right)(x-2)}{4(2-x)(\sqrt{2x^2+3x+2}+4)}\\\\\\lim_{x \to 2} \dfrac{-2\left(x+\dfrac{7}{2}\right)}{4(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{-2x-7}{4(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{-2x-7}{4\sqrt{2x^2+3x+2}+16}\\[/tex]
Por substituição direta:
[tex]\lim_{x \to 2} \dfrac{-(2\cdot 2)-7}{4\sqrt{2\cdot 2^2+3\cdot 2+2}+16}\\\\\lim_{x \to 2} \dfrac{-4-7}{4\sqrt{2\cdot 4+ 6+2}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\sqrt{8+ 8}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\sqrt{16}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\cdot 4+16}\\\\\lim_{x \to 2} \dfrac{-11}{16+16}=-\dfrac{11}{32}\\\\\\\boxed{\boxed{\lim_{x \to 2}\dfrac{\sqrt{2x^2+3x+2}-4}{8-4x} = -\dfrac{11}{32}}}[/tex]
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.