Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

questoes de limites. como resolver​

Questoes De Limites Como Resolver class=

Sagot :

[tex]\lim_{x \to 2} \dfrac{\sqrt{2x^2+3x+2}-4}{8-4x}\\\\[/tex]

Racionalize o numerador:

[tex]\lim_{x \to 2} \dfrac{\sqrt{2x^2+3x+2}-4}{8-4x} \cdot \dfrac{\sqrt{2x^2+3x+2}+4}{\sqrt{2x^2+3x+2}+4}\\\\\lim_{x \to 2} \dfrac{2x^2+3x+2-4^2}{(8-4x)(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{2x^2+3x-14}{(8-4x)(\sqrt{2x^2+3x+2}+4)}\\\\[/tex]

Fatore o numerador e (8-4x):

[tex]2x^2+3x-14=0\\\\x=\dfrac{-3\pm \sqrt{3^2-4 \cdot 2 \cdot (-14)}}{2 \cdot 2} = \dfrac{-3\pm\sqrt{9-4 \cdot (-28)}}{4} = \dfrac{-3\pm\sqrt{121}}{4}\\\\x_1 = \dfrac{-3+11}{4} = 2\\\\x_2 = \dfrac{-3-11}{4} = \dfrac{-14}{4} = -\dfrac{7}{2}[/tex]

[tex]\lim_{x \to 2} \dfrac{2\left(x+\dfrac{7}{2}\right)(x-2)}{4(2-x)(\sqrt{2x^2+3x+2}+4)}\\\\\\lim_{x \to 2} \dfrac{-2\left(x+\dfrac{7}{2}\right)}{4(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{-2x-7}{4(\sqrt{2x^2+3x+2}+4)}\\\\\lim_{x \to 2} \dfrac{-2x-7}{4\sqrt{2x^2+3x+2}+16}\\[/tex]

Por substituição direta:

[tex]\lim_{x \to 2} \dfrac{-(2\cdot 2)-7}{4\sqrt{2\cdot 2^2+3\cdot 2+2}+16}\\\\\lim_{x \to 2} \dfrac{-4-7}{4\sqrt{2\cdot 4+ 6+2}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\sqrt{8+ 8}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\sqrt{16}+16}\\\\\lim_{x \to 2} \dfrac{-11}{4\cdot 4+16}\\\\\lim_{x \to 2} \dfrac{-11}{16+16}=-\dfrac{11}{32}\\\\\\\boxed{\boxed{\lim_{x \to 2}\dfrac{\sqrt{2x^2+3x+2}-4}{8-4x} = -\dfrac{11}{32}}}[/tex]

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.