O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Com 10 pontos não colineares, quantos triângulos podem ser formados?

Sagot :

Temos 10 pontos não colineares, ou seja, não formam retas. Sendo assim, a cada vez que pegarmos 3 desses pontos podemos traçar retas e formar um triângulo, independente de quais pontos sejam tomados.

Assim, podemos combinar 10 pontos de 3 em 3, ou melhor dizendo, podemos tomar 10 pontos 3 a 3 em uma combinação (já que a ordem dos pontos não importa, só precisamos formar triângulos)

C n,p = n!

____

p! (n-p)!

C 10,3 = 10! / 3! (10-3)!

C 10,3 = 10.9.8.7! / 3! 7!

C 10,3= 10.9.8/ 3.2.1

C 10,3= 720/6

C 10,3 = 120.

Essa combinação de 10 pontos tomados 3 a 3 resulta em 120 possibilidades, portanto o número de triângulos que podem ser formados é 120.