Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.
Sagot :
Resposta:
Explicação passo a passo:
[tex]\lim _{x\to \infty \:}\left(\frac{in\left(\frac{kx^2}{x^2+1}\right)^{9x}}{xf\left(x\right)}\right)\\explicacao\lim _{x\to a}\left[c\cdot f\left(x\right)\right]=c\cdot \lim _{x\to a}f\left(x\right)\\in\cdot \lim _{x\to \infty \:}\left(\frac{\left(\frac{kx^2}{x^2+1}\right)^{9x}}{xf\left(x\right)}\right)\\in\cdot \lim _{x\to \infty \:}\left(\frac{k^{9x}\left(x^2\right)^{9x}}{xf\left(x\right)\left(x^2+1\right)^{9x}}\right)\\[/tex]
[tex]explicacao \lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0\\in\frac{\lim _{x\to \infty \:}\left(k^{9x}\left(x^2\right)^{9x}\right)}{\lim _{x\to \infty \:}\left(xf\left(x\right)\left(x^2+1\right)^{9x}\right)}\\[/tex]
indinido
in--------------------- = 0
[tex]\infty[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.