Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.
Sagot :
A função horária das posições é dada por [tex]S(t) = \frac{5}{2}t^2 - 2t + C[/tex] e a aceleração instantânea é constante igual a 5.
Derivada e integral de uma função polinômial
Dada f(x) uma função polinômial, ou seja, uma função real que pode ser expressa na forma [tex]f(x) = a_n x^n + \cdots + a_1 x + xa_0[/tex], temos que a derivada e a integral dessa função existem e podem ser calculadas utilizando as fórmulas:
[tex]f'(x) = na_nx^{n-1} + \cdots + a_1\\\int f(x) dx = \frac{a_n x^{n+1}}{n+1} + \cdots + \frac{a_1 x^2}{2} + a_0 x + C[/tex]
Como a função horária das posições é a integral da função horária da velocidade, a qual é uma função polinomial, temos que:
[tex]S(t) = \int 5t - 2 dt = \frac{5}{2}t^2 - 2t + C[/tex]
Onde C é a posição quando t = 0.
Para encontrar a aceleração instantânea, devemos derivar a função horária da velocidade, ou seja, utilizando a fórmula da derivada de uma função polinomial, temos que:
[tex]a(t) = [5t-2]'=5[/tex]
Para mais informações sobre derivadas de funções, acesse: https://brainly.com.br/tarefa/44833079
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.