O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
A função horária das posições é dada por [tex]S(t) = \frac{5}{2}t^2 - 2t + C[/tex] e a aceleração instantânea é constante igual a 5.
Derivada e integral de uma função polinômial
Dada f(x) uma função polinômial, ou seja, uma função real que pode ser expressa na forma [tex]f(x) = a_n x^n + \cdots + a_1 x + xa_0[/tex], temos que a derivada e a integral dessa função existem e podem ser calculadas utilizando as fórmulas:
[tex]f'(x) = na_nx^{n-1} + \cdots + a_1\\\int f(x) dx = \frac{a_n x^{n+1}}{n+1} + \cdots + \frac{a_1 x^2}{2} + a_0 x + C[/tex]
Como a função horária das posições é a integral da função horária da velocidade, a qual é uma função polinomial, temos que:
[tex]S(t) = \int 5t - 2 dt = \frac{5}{2}t^2 - 2t + C[/tex]
Onde C é a posição quando t = 0.
Para encontrar a aceleração instantânea, devemos derivar a função horária da velocidade, ou seja, utilizando a fórmula da derivada de uma função polinomial, temos que:
[tex]a(t) = [5t-2]'=5[/tex]
Para mais informações sobre derivadas de funções, acesse: https://brainly.com.br/tarefa/44833079

Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.