Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

alguem me explica por favooor?

Alguem Me Explica Por Favooor class=

Sagot :

O Teorema de Laplace permite expandir um determinante de ordem em uma soma de determinantes de ordem . A descrição do procedimento é a seguinte:

Considera-se uma fila (linha ou coluna) qualquer da matriz; somam-se os produtos de cada elemento desta linha por seus respectivos cofatores. O cofator de um elemento, por sua vez, é definido como o determinante da matriz que resta da eliminação da linha e coluna que passam pelo elemento, multiplicado pelo fator sinal ― negativo se a soma do índice da coluna com o índice da linha for ímpar, e positivo do contrário. O processo pode ser repetido indefinidamente, até chegarmos num determinante que possa ser calculado trivialmente.

Para deixar o processo mais claro, considere uma matriz . Podemos escolher qualquer linha ou coluna para calcular o determinante; vamos, por comodidade, escolher a segunda coluna, pois ela contém um zero ― o que nos dispensa de calcular um determinante, já que este seria multiplicado por zero. Então

Você pode verificar que esse mesmo valor será obtido se usarmos a expansão de Laplace por outra coluna ou linha, e também se usarmos a regra de Sarrus. De fato, podemos provar, algebricamente, que a regra de Sarrus é equivalente ao uso do teorema de Laplace para um determinante de ordem 3.

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.