O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.

as raizes x₁ e x₂ da equação do segundo grau x²-5x+6=0 são:​

Sagot :

Olá!!!

Equação do segundo grau:

ax² + bx + c = 0 ← a não pode ser negativo.

∆ = b² - 4.a.c

x = -b±√∆/2.a

x² - 5x + 6 = 0 ← a: 1, b: -5, c: 6

∆ = (-5)² - 4.1.6

∆ = 25 - 24

∆ = 1

x = -(-5)±√1/2.1

x = 5±1/2

x¹ = 5+1/2 = 4/2 = 3

x² = 5-1/2 = 6/2 = 2

Logo as raízes x¹ e x² são 3 e 2.

✅ Após resolver os cálculos,

concluímos que as raízes x e x

da equação do segundo grau são:

[tex] \Large \boxed{ \boxed{ \bf \:x_1 = 3 \: \: e \: \: x_2 = 2 }}[/tex]

Resolução!

[tex]\large\boxed{\begin{array}{l} \rm \: x {}^{2} - 5x + 6 = 0 \\ \\ \rightarrow \begin{cases} \rm \: a = 1 \\ \rm \: b = - 5 \\ \rm \: c = 6\end{cases} \\ \\ \rm\Delta = b {}^{2} - 4 \cdot{a} \cdot{c} \\ \Delta = ( - 5) {}^{2} - 4 \cdot1 \cdot6 \\\Delta = 25 - 24 \\ \Delta = 1 \\ \\ \rm \: x = \dfrac{ - b \pm \sqrt{\Delta} }{2 \cdot{a}} \\ \\ \rm \: x = \dfrac{ - ( - 5) \pm \sqrt{1} }{2 \cdot1} \\ \\ \rm \: x = \dfrac{5 \pm1}{2} \begin{cases} \rm \: x _1 = \dfrac{5 + 1}{2} = \dfrac{6}{2} = \boxed{ \boxed{3}} \\ \\ \rm \: x_2 = \dfrac{5 - 1}{2} = \dfrac{4}{2} = \boxed{ \boxed{ 2}}\end{cases} \end{array}}[/tex]

veja mais em:

https://brainly.com.br/tarefa/26427185

Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.