O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Determine os valores de x para que exista log12 x ^ 2 - 2x - 15

Sagot :

Resposta:

-3 < x < 5

Explicação passo a passo:

log₁₂(x²-2x+5)

Para que exista o logaritmo:

logₐb = c ⇔ b > 0 e 0 < a ≠ 1, logo

x²-2x+5 > 0

[tex]\displaystyle Aplicando~a~f\acute{o}rmula~de~Bhaskara~para~x^{2}-2x-15=0~~e~comparando~com~(a)x^{2}+(b)x+(c)=0,~determinamos~os~coeficientes:~\\a=1{;}~b=-2~e~c=-15\\\\C\acute{a}lculo~do~discriminante~(\Delta):&\\&~\Delta=(b)^{2}-4(a)(c)=(-2)^{2}-4(1)(-15)=4-(-60)=64\\\\C\acute{a}lculo~das~raizes:&\\x^{'}=\frac{-(b)-\sqrt{\Delta}}{2(a)}=\frac{-(-2)-\sqrt{64}}{2(1)}=\frac{2-8}{2}=\frac{-6}{2}=-3[/tex][tex]\displaystyle \\\\\\x^{''}=\frac{-(b)+\sqrt{\Delta}}{2(a)}=\frac{-(-2)+\sqrt{64}}{2(1)}=\frac{2+8}{2}=\frac{10}{2}=5\\\\S=\{-3,~5\}[/tex]

Para que seja x²-2x+5 > 0 então -3 < x < 5