Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

Mostre que 4a² – 4ab + 3b² ≥ 0 para todos a, b reais.​

Sagot :

Explicação passo a passo:

Primeiro vamos reescrever a expressão

                   4a² -4ab +3b² = 4a² -4ab +b² + 2b² = (2a - b)² + 2b²

Agora sabemos que dado qualquer número real x => x² ≥ 0, portanto temos

(2a-b)² ≥ 0 e 2b² ≥ 0, com isso somando 2 números maiores ou iguais a 0, a soma  (2a-b)² +2b² é maior ou igual a 0.

Porém (2a-b)² +2b² = 4a² -4ab +3b² e vimos que (2a-b)² +2b² ≥ 0 portanto

      4a² – 4ab + 3b² ≥ 0 para qualquer a e b reais.

Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.