O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Descubra um vasto conhecimento de especialistas em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Mostre que 4a² – 4ab + 3b² ≥ 0 para todos a, b reais.​

Sagot :

Explicação passo a passo:

Primeiro vamos reescrever a expressão

                   4a² -4ab +3b² = 4a² -4ab +b² + 2b² = (2a - b)² + 2b²

Agora sabemos que dado qualquer número real x => x² ≥ 0, portanto temos

(2a-b)² ≥ 0 e 2b² ≥ 0, com isso somando 2 números maiores ou iguais a 0, a soma  (2a-b)² +2b² é maior ou igual a 0.

Porém (2a-b)² +2b² = 4a² -4ab +3b² e vimos que (2a-b)² +2b² ≥ 0 portanto

      4a² – 4ab + 3b² ≥ 0 para qualquer a e b reais.

Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.