O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

A média bimestral da disciplina matemática no colégio em que Pedro estuda é composta pela média aritmética entre três provas (P1, P2 e P3). Nas duas primeiras provas, ele obteve 7,0 e 4,5. Sabendo que a média necessária para que ele não fique em recuperação nesse bimestre é igual a 6,0, a menor nota que ele precisa obter na prova P3 para atingir a média é igual a:

Sagot :

A nota minima na P3 que Pedro deve tirar é [tex]\boxed{\bf 6{,}5}[/tex]

Definindo uma expressão

Podemos definir uma expressão algébrica para resolver este problema.
Tal que uma das três notas será x, para representar a nota da prova P3, e a média das notas será comparada a 6, nota mínima para aprovação.

[tex]\large\begin{array}{l}\raisebox{8pt}{$\sf \dfrac{7+4{,}5+x}{3}=6$}\end{array}[/tex]

◕ Calculando

[tex]\begin{array}{l}\raisebox{8pt}{$\sf \dfrac{7+4{,}5+x}{3}=6$}\\\raisebox{8pt}{$\sf \dfrac{11{,}5+x}{3}=\!\!\!\large\text{$\!\!\!\!\searrow \!\!\!\!\!\!\nearrow$}\normalsize\:\dfrac{6}{1}\Rightarrow Multiplicac_{\!\!,}\tilde{a}o~cruzada$}\\\sf 11{,}5+x=18\\\sf x=18-11{,}5\\\large\boxed{\bf X=6{,}5}\end{array}[/tex]

Através de uma expressão algébrica, definimos o valor da nota na prova P3.

➯ Continue estudando

brainly.com.br/tarefa/46831823

brainly.com.br/tarefa/46875103

Dúvidas? Estarei a disposição para eventuais esclarecimentos.

[tex]\begin{array}{l}\textsf{\textbf{Bons\:estudos!}}\\\\\text{$\sf Sua\:avaliac_{\!\!,}\tilde{a}o\:me\:ajuda\:a\:melhorar$}~\orange{\bigstar\bigstar\bigstar\bigstar\bigstar}\\\textsf{Marque\:como\:a\:melhor\:resposta\:\textbf{se\:for\:qualificada}}\\\\\textsf{\textbf{\green{Brainly}}\:-\:\blue{\sf Para\:estudantes.\:Por\:estudantes}}\end{array}[/tex]

View image TheNinjaTaurus