O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.

calcule o limite
(equação no anexo)


Calcule O Limite Equação No Anexo class=

Sagot :

O valor do limite é 6.

Explicação passo a passo:

Pelas propriedades dos limites, o limite da multiplicação por escalar é igual à multiplicação do escalar pelo limite.

[tex]\lim_{x \to a} [c(f(x))]=c( \lim_{x \to a} f(x))[/tex]

Daí, segue que:

[tex]\lim_{x \to 0} \frac{\frac{3}{x} }{\frac{2cos4x}{sen4x} }[/tex]

[tex]= \frac{3}{2} \lim_{x \to 0} \frac{\frac{1}{x} }{\frac{cos4x}{sen4x} }[/tex]

Tangente (tg): razão entre o seno e o cosseno de um dado ângulo ou entre os catetos.

 [tex]= \frac{3}{2} \lim_{x \to 0} \frac{tg4x}{x}[/tex]

Pela Regra de L'Hôpital, o limite de um quociente é igual ao limite do quociente de suas derivadas, desde que as hipóteses do teorema sejam satisfeitas.

 [tex]= \frac{3}{2} \lim_{x \to 0} \frac{tg4x}{x}[/tex]

Determinando as derivadas dos quocientes.

y = tg(x)

y' = sec2 x

y = x

y' = 1

 [tex]= \frac{3}{2} \lim_{x \to 0} \frac{sec^24x(4)}{1}\\\\[/tex]

 [tex]= \frac{3}{2} \lim_{x \to 0} \frac{(sec^24(0))(4)}{1}\\\\[/tex]

[tex]=\frac{3}{2} (\frac{1(4)}{1} )[/tex]

= 6

Entenda mais sobre limites em:

https://brainly.com.br/tarefa/6814537

https://brainly.com.br/tarefa/40295584

View image Iucasaraujo
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.