Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
Inicialmente devemos lembrar como é o processo para se obter a expressão [tex] \sf 1 + tan^2(x) = sec^2(x)[/tex]. Primeiro vamos escrever a relação fundamental da trigonometria:
[tex] \: \: \: \: \: \: \: \bullet \: \sf sen {}^{2} (x) + cos {}^{2} (x) = 1 \: \bullet [/tex]
Inicialmente para obter aquela expressão, dividimos todos os termos dessa relação por [tex]\sf cos^2(x) [/tex]:
[tex] \: \: \: \:\sf \frac{sen {}^{2} (x)}{cos {}^{2} (x)} + \frac{cos {}^{2} (x)}{cos{}^{2}(x) } = \frac{1}{cos {}^{2}(x) } \\ \\ \sf \: \: \: \: 1 + \left( \frac{sen(x)}{cos(x)} \right) {}^{2} = \left( \frac{1}{cos(x)} \right) {}^{2} [/tex]
Como sabemos pela trigonometria:
[tex] \sf \frac{sen(x)}{cos(x)} = tan(x) \: \: e \: \: \frac{1}{cos(x)} = sec(x) \\ [/tex]
Substituindo essa informação, temos:
[tex] \: \: \: \: \: \: \boxed{ \bullet \: \sf 1 + tan {}^{2} (x) = sec {}^{2} (x) \: \bullet}[/tex]
Chegamos então a expressão dada na questão. Usando esta lógica vamos fazer a mesma coisa só que desta vez vamos dividir tudo por [tex]\sf cos(x) [/tex]:
[tex] \: \: \: \:\sf \frac{sen {}^{2} (x)}{cos (x)} + \frac{cos {}^{2} (x)}{cos(x) } = \frac{1}{cos (x) } \\ \\ \sf \: \: \: \: \left[ \frac{sen {}^{2}(x) }{cos(x)} + cos(x) = sec(x) \right ] \: . \: cos(x)\\ \\ \boxed{\sf sen {}^{2}(x). cos(x) + cos {}^{2} (x) = sec(x).cos(x)}[/tex]
Fazendo o mesmo passo a passo, não chegamos a obter o resultado esperado, que era [tex] \sf 1 + tan(x) = sec(x)[/tex]. Portanto:
- Resposta: Não podemos dizer que [tex] \sf 1 + tan(x) = sec(x)[/tex] está correto só pelo fato de [tex] \sf 1 + tan^2(x) = sec^2(x)[/tex] ser.
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.