Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{f(x) = ax^2 + bx - c}[/tex]
[tex]\mathsf{f(x) = x^2 + 2x - 27}[/tex]
[tex]\mathsf{x^2 + 2x - 27 = 0}[/tex]
[tex]\mathsf{\Delta = b^2 - 4.a.c}[/tex]
[tex]\mathsf{\Delta = (2)^2 - 4.1.(-27)}[/tex]
[tex]\mathsf{\Delta = 4 + 108}[/tex]
[tex]\mathsf{\Delta = 112}[/tex]
[tex]\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{-2 \pm \sqrt{112}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{-2 + 4\sqrt{7}}{2} = -1 + 2\sqrt{7}}\\\\\mathsf{x'' = \dfrac{-2 - 4\sqrt{7}}{2} = -1 - 2\sqrt{7}}\end{cases}}[/tex]
[tex]\boxed{\boxed{\mathsf{S = \{1 + 2\sqrt{7};-1 -2\sqrt{7}\}}}}[/tex]
[tex]\mathsf{x_V = -\dfrac{b}{2a} = -\dfrac{2}{2} = -1}[/tex]
[tex]\mathsf{y_V = -\dfrac{\Delta}{4a} = -\dfrac{112}{4} = -28}[/tex]
[tex]\boxed{\boxed{\mathsf{V(-1;-28)}}}[/tex]