O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.
Sagot :
Resposta:
S = { - 3 ; 3 } logo b )
Explicação passo a passo:
A equação
[tex]x^4-5x^2-36=0[/tex]
É denominada de "biquadrada" pois aparece o x elevado a 4.
E esta na forma :
[tex]ax^4-cx^2-d=0[/tex]
E repare que :
[tex]x^4=(x^{2} )^2[/tex]
Para resolução começamos por fazer uma mudança de variável
x² = y
Ficando
y² - 5 y - 36 = 0
Usando a Fórmula de Bhaskara
y = ( - b ± √Δ ) / 2 com Δ = b² - 4 * a * c a ≠ 0
y² - 5 y - 36 = 0
a = 1
b = - 5
c = - 36
Δ = ( - 5 )² - 4 * 1 * ( - 36 ) = 25 + 4*36 = 25 + 144 = 169
√Δ = √169 = 13
y1 = ( - (- 5 ) + 13 ) / ( 2 * 1 )
y1 = ( + 5 + 13 ) / 2
y1 = 18/2
y1 = 9
y2 = ( - (- 5 ) - 13 ) / ( 2 * 1 )
y2 = ( + 5 - 13 ) / 2
y2 = - 8 / 2
y2 = - 4
Mas a nossa incógnita original é x.
Temos que volta a ela
Para y = 9
x² = y
x² = 9
x = + √9 ou x = - √9
x = 3 ou x = -3
Para y = - 4
x² = y
x² = - 4
[tex]x= \sqrt{-4}[/tex]
Paramos imediatamente , pois nos números reais não existem raízes
quadradas de números negativos.
Assim as raízes só podem ser
x = 3 ou x = -3
S = { - 3 ; 3 } logo b )
Bons estudos.
---------------------------
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.