soin38
Answered

O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

4. Um projétil lançado da origem 0(0,0), segundo um referencial dado, percorre uma trajetória parabólica cuja função representativa é y = ax² + bx. Sabendo que o projétil atinge sua altura máxima no ponto (3, 10), escreva a função dessa trajetória.​

Sagot :

Resposta:

y = (-20x^{2} / 36) + (20x/3)

Explicação passo a passo:

Primeiramente, temos que a parábola atinge seu ponto máximo no ponto (3, 10). Com isso, temos que x máximo é 3 e y máximo é 10.

Após isso, podemos inserir estes valores na equação, ficando com:

10 = 9a + 3b

Além disso, é possível supor o segundo ponto onde a função retorna y = 0, ao dobrarmos o valor de x máximo, ou seja, quando x = 6, ficando com:

0 = 36a + 6b

Colocando as duas equações em um sistema de equações, temos que:

10 = 9a + 3b

0 = 36a + 6b

Solucionando o sistema, a = - 20/36 e b = 20/3. Inserindo estes valores na fórmula original y = ax² + bx, a função ficará assim:

y = (-20x^{2} / 36) + (20x/3)