soin38
Answered

Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.

4. Um projétil lançado da origem 0(0,0), segundo um referencial dado, percorre uma trajetória parabólica cuja função representativa é y = ax² + bx. Sabendo que o projétil atinge sua altura máxima no ponto (3, 10), escreva a função dessa trajetória.​

Sagot :

Resposta:

y = (-20x^{2} / 36) + (20x/3)

Explicação passo a passo:

Primeiramente, temos que a parábola atinge seu ponto máximo no ponto (3, 10). Com isso, temos que x máximo é 3 e y máximo é 10.

Após isso, podemos inserir estes valores na equação, ficando com:

10 = 9a + 3b

Além disso, é possível supor o segundo ponto onde a função retorna y = 0, ao dobrarmos o valor de x máximo, ou seja, quando x = 6, ficando com:

0 = 36a + 6b

Colocando as duas equações em um sistema de equações, temos que:

10 = 9a + 3b

0 = 36a + 6b

Solucionando o sistema, a = - 20/36 e b = 20/3. Inserindo estes valores na fórmula original y = ax² + bx, a função ficará assim:

y = (-20x^{2} / 36) + (20x/3)