O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

TODAS AS ARESTAS DE UM PRISMA HEXAGONAL REGULAR MEDEM RAIZ DE 6 CM. SENDO ASSIM, SEU VOLUME , EM CENTIMETROS CUBICOS, É IGUAL A

Sagot :

Resposta:

[tex]V_{prisma} = 27\sqrt{2}[/tex] cm³

Explicação passo a passo:

Primeiro precisamos achar a área da base hexagonal do prisma. Um hexágono regular pode ser dividido em 6 triângulos equiláteros (veja a figura anexa).

Então basta acharmos a área de um triângulo desses e multiplicar por 6. Como sabemos o valor das arestas, e consequentemente dos lados, podemos aplicar a fórmula da área:

[tex]A_{\Delta Equilatero} = \frac{l^2\sqrt{3}}{4} \\A_{\Delta Equilatero} = \frac{\sqrt{6}^2\sqrt{3}}{4} \\A_{\Delta Equilatero} = \frac{6\sqrt{3}}{4} \\A_{\Delta Equilatero} = \frac{3\sqrt{3}}{2} \\A_{hexagono} = \frac{3\sqrt{3}}{2}.6\\\bold{A_{hexagono} = 9\sqrt{3}}[/tex]

Agora basta multiplicar essa área pela altura, que também vale o valor da aresta, para achar o volume:

[tex]V_{prisma} = A_{base}.h\\V_{prisma} = 9.\sqrt{3}.\sqrt{6}\\V_{prisma} = 9.\sqrt{18}\\\bold{V_{prisma} = 27\sqrt{2}} \ cm^3[/tex]

View image augustolupan