Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Considere, num referencial o.n. do espaço, os vetores a = (3,2,0) e b = (0, √5,1).

1. Determine a.b

2. Determine, em graus com aproximação às unidades, a amplitude do ângulo dos dois vetores.

3. Calcule ||a - b||^2


Considere Num Referencial On Do Espaço Os Vetores A 320 E B 0 51 1 Determine Ab 2 Determine Em Graus Com Aproximação Às Unidades A Amplitude Do Ângulo Dos Dois class=

Sagot :

Resposta:

1 )  2√5          2 ) 59 º           3) 19 - 4√5

Explicação passo a passo:

Dados:

Vetores nos espaço

a = ( 3 , 2 , 0 )  

b = ( 0 , √5 , 1 )

Resolução:

1 )

Produto interno ( escalar ) dos vetores "a" e  " b "

a . b = ( 3 , 2 , 0 ) . ( 0 , √5 , 1 )

= 3 * 0 + 2 * √5 + 0 * 1

= 2√5    

2 )

Para calcular a amplitude do ângulo formado pelos vetores usarei a fórmula:

[tex]cos..angulo..(a b )=\dfrac{a.b}{||a||^2*||b||^2}[/tex]

Cálculos auxiliares:

[tex]||a||=\sqrt{3^2+2^2+0^2}=\sqrt{9+4} =\sqrt{13}[/tex]

[tex]||b||=\sqrt{0^2+(\sqrt{5})^2+1^2 } =\sqrt{5+1} =\sqrt{6}[/tex]

Fim de cálculos auxiliares

[tex]cos..angulo..(a e b )=\dfrac{2\sqrt{5} }{\sqrt{13}*\sqrt{6}}[/tex]    

[tex]cos..angulo..(a e b )=\dfrac{2\sqrt{5} }{\sqrt{13}*\sqrt{6} }=\dfrac{2\sqrt{5} }{\sqrt{78} } =0.506[/tex]

[tex]arco...cujo...cos(0,506) = 59,6[/tex]

3 )  

|| a - b ||² =  ?          

Início de cálculos

|| a - b ||² = ( a - b ) . (a - b)      ( pela 2ª propriedade )

a. a - a . b - b . a + b . b

( Pela propriedade comutativa do Produto interno de vetores

- b . a = - a . b

Assim fica

|| a ||² - 2 a . b + || b ||²

Usando os valores atrás determinados

[tex](\sqrt{13})^2-2*(2*\sqrt{5})+(\sqrt{6} )^2[/tex]

[tex]=13-4*\sqrt{5}+6=19-4\sqrt{5}[/tex]          

Fim de cálculos

Observação → Propriedades do Produto Interno ou Escalar de vetores

1ª )   Propriedade comutativa

v . w = w . v

2ª)   Propriedade de produto interno de um vetor por ele mesmo

v . v = ||v|| ||v|| = ||v||²

Demonstração desta propriedade que foi usada nesta tarefa.

v . v = || v|| * || v || * cos (v ^ v )

Mas o ângulo ( v ^v ) é igual a zero. Os vetores são coincidentes.

cos ( 0 º ) = 1

Logo

v . v = || v|| * || v || * 1

v . v = || v|| * || v ||

v . v = || v||²

3ª)   Propriedade distributiva da multiplicação em relação à adição ( no produto interno de vetores )

u . ( v + w ) = u . v + u . w

4ª)  Propriedade associativa

(kv).w = v.(kw) = k(v.w)

5ª)   Propriedade da multiplicação de um vetor por um valor K

|kv| = |k| |v|

6ª)   |u.v| ≤ |u| |v|    ( desigualdade de Schwarz )

7ª)   |u+v| ≤ |u| + |v|   ( desigualdade triangular)

Bons estudos.    

------------------------------------

( . )  produto interno de vetores      ( * ) multiplicação     ( / ) divisão

||     ||  norma de um vetor  

Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.