Answered

Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Descubra um vasto conhecimento de especialistas em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.

Determine a área hachurada interior ao hexágono regular de lado 2 cm e exterior ao triângulo isósceles, conforme a figura abaixo.

Determine A Área Hachurada Interior Ao Hexágono Regular De Lado 2 Cm E Exterior Ao Triângulo Isósceles Conforme A Figura Abaixo class=

Sagot :

SubGui

Olá, boa noite.

Para resolvermos esta questão, devemos lembrar de algumas propriedades estudadas sobre geometria.

Primeiro, nomeamos os vértices do hexágono como na primeira imagem em anexo.

Trace uma reta unindo os vértices [tex]A[/tex] e [tex]E[/tex], como na segunda imagem em anexo.

Sabemos que os ângulos nos vértices deste hexágono podem ser calculados pela fórmula para o cálculo de ângulos internos: [tex]\alpha_i=\dfrac{S_i}{n}=\dfrac{180^{\circ}\cdot (n-2)}{n}[/tex], em que [tex]n[/tex] é o número de lados do polígono.

[tex]\alpha=\dfrac{180^{\circ}\cdot (6-2)}{6}=\dfrac{180^{\circ}\cdot 4}{6}=\dfrac{720^{\circ}}{6}=120^{\circ}[/tex]

Calculamos a área do triângulo [tex]\triangle{\text{AEF}}[/tex] utilizando a fórmula: [tex]A(\triangle{AEF})=\dfrac{\overline{EF}\cdot \overline{FA}\cdot\sin(\alpha)}{2}[/tex], em que [tex]\overline{EF}[/tex] e [tex]\overline{FA}[/tex] são os comprimentos dos segmentos que unem os vértices e  [tex]\alpha[/tex] é o ângulo [tex]E\hat{F}A[/tex], isto é, [tex]60^{\circ}[/tex];

[tex]A(\triangle{AEF})=\dfrac{2\cdot 2\cdot\sin(120^{\circ})}{2}=\dfrac{4\cdot \dfrac{\sqrt{3}}{2}}{2}=\sqrt{3}~\text{cm}^2[/tex]

Agora, calculamos o comprimento do segmento [tex]\overline{AE}[/tex] por meio da lei dos cossenos: [tex]\overline{AE}^2=\overline{EF}^2+\overline{FA}^2-2\cdot \overline{EF}\cdot\overline{FA}\cdot \cos(\alpha)[/tex];

[tex]\overline{AE}^2=2^2+2^2-2\cdot 2\cdot2\cdot \cos(120^{\circ})=4+4-2\cdot2\cdot2\cdot\left(-\dfrac{1}{2}\right)=8+4=12\\\\\\ \overline{AE}=\sqrt{12}=2\sqrt{3}~\text{cm}[/tex]

Então, note que o outro triângulo formado é retângulo em [tex]A[/tex].

Calculamos o comprimento do segmento que une o vértice [tex]A[/tex] ao ponto médio do segmento [tex]\overline{AB}[/tex], [tex]G[/tex], isto é, metade do comprimento do lado do hexágono: [tex]\overline{AG}=\dfrac{\overline{AB}}{2}=\dfrac{2}{2}=1[/tex].

Daí, calculamos a área do triângulo retângulo por meio da fórmula: [tex]A(\triangle{\text{AGE}})=\dfrac{\overline{AG}\cdot\overline{AE}}{2}[/tex]

[tex]A(\triangle{\text{AGE}}) = \dfrac{1\cdot 2\sqrt{3}}{2}=\sqrt{3}[/tex]

Somando-se as áreas encontradas, temos:

[tex]A(\triangle{\text{AEF}})+A(\triangle{\text{AGE}})=\sqrt{3}+\sqrt{3}=2\sqrt{3}~\text{cm}^2[/tex]

Note que, dado que o triângulo [tex]\triangle{\text{GDE}}[/tex] é isósceles, os comprimentos de [tex]\overline{GD}[/tex] e [tex]\overline{GE}[/tex] são iguais, portanto o triângulo divide igualmente o hexágono. Isto significa que a área hachurada é o dobro da área que encontramos:

[tex]A(\text{hachurada})=2\cdot 2\sqrt{3}=4\sqrt{3}~\text{cm}^2~~\checkmark[/tex]

View image SubGui
View image SubGui
Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.