O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

ANÁLISE COMBINATÓRIA:

ANÁLISE COMBINATÓRIA class=

Sagot :

Segue resposta em anexo. Utilizei conceito de n!= n(n-1)! E o conceito de arranjo pra resolver tal problema
View image guilherme10102003

[tex]A_{n;p} =\frac{n!}{(n-p)!}[/tex]

[tex]A_{n-1;3} =\frac{(n-1)!}{(n-1-3)!}=\frac{(n-1)!}{(n-4)!} =\frac{(n-1).(n-2).(n-3).(n-4)!}{(n-4)!} =(n-1).(n-2).(n-3)[/tex]

[tex]A_{n;3} =\frac{n!}{(n-3)!}=\frac{n.(n-1).(n-2).(n-3)!}{(n-3)!} =n.(n-1).(n-2)[/tex]

[tex]Portanto...[/tex]

    [tex]\frac{A_{n-1;3} }{A_{n;3} } =\frac{3}{4}[/tex]

[tex]\frac{(n-1).(n-2).(n-3)}{n.(n-1).(n-2)} =\frac{3}{4}[/tex]

        [tex]\frac{n-3}{n} =\frac{3}{4}[/tex]

  [tex]4\:.\:(n-3)=3n[/tex]

  [tex]4n-12=3n[/tex]

  [tex]4n-3n=12[/tex]

       [tex]n=12[/tex]

 [tex]Resposta:n=12[/tex]

       

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.