Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

Determine o valor de K para que a função f (x) = (2-k)x²-5x+3 admita o valor máximo.



Sagot :

No gráfico em anexo o ponto azul é chamado de valor máximo (ypsilon do

vértice ou simplesmente Yv), pois ele é o maior valor que o y pode assumir e para

isso ocorrer o coeficiente angular 'a' tem de ser negativo (desse modo, a

concavidade da parábola - que está de vermelho - possue concavidade voltada para

baixo).

 

 Note também a região rabiscada. Ela representa o conjunto imagem, ou seja, todos os valores de y correspondentes ao domínio da função (x diferente de 2).

 

Vamos lá, peguemos a função: f(x) = (2 - k)x^2 - 5x + 3.

 

Como foi explicado, a função para possuir valor máximo, seu coeficiente 'a' tem de ser negativo (a < 0).

 

Na função, o coeficiente 'a' é o que multiplica o monômio x^2 >> (2 - k). Gerou a inequação >

 

 2 - k < 0 (k passa para o outro lado invertendo o sinal);

   2 < k

 

 S = {k > 2}.

 

 

Só complementando: o coef. b é o que multiplica o monômio x >> (5); c é o termo independente (3).

                                   

View image lucasbatista
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Volte ao Sistersinspirit.ca para obter mais conhecimento e respostas dos nossos especialistas.