O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
[tex]S_n=n.\frac{(a_1 + a_n)}{2}[/tex]
Para melhor entendimento perceba a sequência:
[tex]a_1[/tex] [tex]a_2[/tex] [tex]a_3[/tex] [tex]a_4[/tex] [tex]a_5[/tex]
Dá para perceber que, somente em sequências de números ímpares, podemos ter um termo médio. Nesse caso o [tex]a_3[/tex]
Agora na fórmula da soma dos termos da PA:
[tex]295=n.\frac{(a_1 + a_5)}{2}[/tex]
Outra ideia é perceber o caso acima de [tex]\frac{a_1 + a_5}{2}[/tex] é uma média aritmética, ou seja, o termo médio. Que é o que procuramos. Então fica: [tex]295= n.a_3[/tex]
Já que "n" é o número de termos, então é igual a 5. 295 = [tex]a_3[/tex] . 5
[tex]a_3[/tex] = 59
Boa tarde =]
Perdão pela demora. Abraço!
Natty, veja se assim é mais fácil:
Numa PA a soma do primeiro mais o último termo é igual a soma do segundo mais o penúltimo e assim por diante.
Numa PA de cinco termos isto pode ser representado assim
[tex]a_1+a_5=a_2+a_4=a_3+a_3 [/tex]:
Da expressão
[tex]S_5=\frac{(a_1+a_5)\cdot 5}{2}=295[/tex]
Temos que
a_1+a_5=118[tex]5(a_1+a_5)=590[/tex]
a[tex]a_1+a_5=\frac {590}{5}=118[/tex]
Do que temos acima:
[tex]a_3+a_3=2 \cdot a_3=118[/tex]
Então:
[tex]a_3=\frac {118}{2}=59[/tex]
Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.