O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.

Encontre a altura do cilindro circular direito de volume máximo V que pode ser inscrito em um esfera de raio R.
a. 2R/13
b. R/(3)^1/2
C. 2R/(5)^1/2
d. 2R/(3)^1/2
e. 1/3​

Encontre A Altura Do Cilindro Circular Direito De Volume Máximo V Que Pode Ser Inscrito Em Um Esfera De Raio R A 2R13 B R312 C 2R512 D 2R312 E 13 class=

Sagot :

Resposta:

d. 2R/(3)^1/2

Explicação passo a passo:

Sejam r e h a raio e altura do cilindro = r² = R² - H²/4

Volume do cilindro = V = Ab*H

V =πr²*H = π(R² - H²/4)*H =  π*R²H - π*H³/4

para o volume seja máximo aplicamos a derivada e igualamos a 0

Dv/dH = π*R² - π*3H²/4 = 0

π*R² = π*3H²/4

3H²/4 = R²

h  = 2R*√3/3

Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.