O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.

Exercícios

1) Obtenha, caso exista, a inversa de cada matriz:

Exercícios 1 Obtenha Caso Exista A Inversa De Cada Matriz class=

Sagot :

[tex]\large\boxed{\begin{array}{l}\rm a )\\\rm A=\begin{bmatrix}\rm3&\rm1\\\rm5&\rm2\end{bmatrix}\\\rm det\,A=6-5=1\ne0\longrightarrow \acute e\,invers\acute ivel.\\\rm cof\,A=\begin{bmatrix}\rm2&\rm-5\\\rm-1&\rm\,\,\,3\end{bmatrix}\\\rm adj\,A=\begin{bmatrix}\rm2&\rm-1\\\rm-5&\rm3\end{bmatrix}\\\\\rm A^{-1}=\dfrac{1}{det\,A}\cdot adj\,A\\\\\rm A^{-1}=\dfrac{1}{1}\cdot\begin{bmatrix}\rm2&\rm-1\\\rm-5&\rm3\end{bmatrix}\\\\\rm A^{-1}=\begin{bmatrix}\rm 2&\rm-1\\\rm-5&\rm3\end{bmatrix}\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm b)\\\rm B=\begin{bmatrix}\rm2&\rm10\\\rm1&\rm5\end{bmatrix}\\\rm det\,B=0(possui\,colunas\,proporcionais)\\\rm como\,det\,B=0\,a\,matriz\,inversa\,n\tilde ao\,existe.\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm c)\\\rm C=\begin{bmatrix}\rm3&\rm2\\\rm1&\rm4\end{bmatrix}\\\rm det\,C=12-2=10\ne0\longrightarrow admite\,matriz\,inversa.\\\rm cof\, C=\begin{bmatrix}\rm4&\rm-1\\\rm-2&\rm3\end{bmatrix}\\\\\rm adj\,C=\begin{bmatrix}\rm4&\rm-2\\\rm-1&\rm3\end{bmatrix}\\\\\rm C^{-1}=\dfrac{1}{C}\cdot adj \,C\\\\\rm C^{-1}=\dfrac{1}{10}\cdot\begin{bmatrix}\rm4&\rm-2\\\rm-1&\rm3\end{bmatrix}\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm C^{-1}=\begin{bmatrix}\rm\dfrac{2}{5}&\rm-\dfrac{1}{5}\\\\\rm-\dfrac{1}{10}&\rm\dfrac{3}{10}\end{bmatrix}\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm d)\\\rm D=\begin{bmatrix}\rm4&\rm4\\\rm8&\rm0\end{bmatrix}\\\rm det\,D=0-32=-32\ne0\longrightarrow admite\,matriz\,inversa.\\\rm cof\,D=\begin{bmatrix}\rm0&\rm-8\\\rm-4&\rm4\end{bmatrix}\\\\\rm adj\,D=\begin{bmatrix}\rm0&\rm-4\\\rm-8&\rm4\end{bmatrix}\\\\\rm D^{-1}=\dfrac{1}{det\,D}\cdot adj\,D\\\\\rm D^{-1}=-\dfrac{1}{32}\cdot\begin{bmatrix}\rm0&\rm-4\\\rm-8&\rm4\end{bmatrix}\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm D^{-1}=\begin{bmatrix}\rm0&\rm\dfrac{1}{8}\\\\\rm\dfrac{1}{4}&\rm-\dfrac{1}{8}\end{bmatrix}\end{array}}[/tex]