O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.

Resolva a equação x³ +5 x²-18x-72 = 0, sabendo que (-3) é uma das suas raízes.



Sagot :

Sabendo que -3 é uma das raizes a divisão do polinômio por (x+3) é exata.

Então podemos fatorar o polinômio fazendo:

[tex](x+3)(x^2+2x-24)=0[/tex]

 

 

Resolvendo a equação do segundo grau acima obtem-se as outras duas raizes da equação original:

 

 

[tex]\Delta=2^2-4 \cdot 1 \cdot (-24)=100[/tex] 

 

 

Utilizando as fórmulas de Bhaskara:

 

 

[tex]x= \frac {-2+\ \sqrt{100}}{2 \cdot 1}=\frac {-2+-10}{2}= 4 ou -6[/tex] 

 

Então o conjunto solução da equação original é: S={-6, -3 e 4} 

 

 

Celio

Olá, Mary.

 

O polinômio da questão é de grau 3 e possui, portanto, três raízes.

Como conhecemos uma das raízes da equação, podemos encontrar as outras duas por meio das Relações de Girard para raízes de polinômios de 3.º grau.

Primeiramente, vamos enunciar as Relações.

Seja o polinômio de grau 3 na forma geral abaixo:

 

[tex]P(x)=ax^3+bx^2+cx+d[/tex]

 

De acordo com as Relações de Girard, suas raízes, ou seja, os valores  [tex]x_1,x_2,x_3[/tex]  para os quais temos  [tex]P(x_i)=0,i=1,2,3,[/tex]  possuem as seguintes relações:

 

[tex]\begin{cases} x_1 + x_2 + x_3 = -\frac b a\text{ (i)} \\ x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac c a\text{ (ii)}\\ x_1 \cdot x_2 \cdot x_3 = -\frac d a\text{ (iii)}\end{cases}[/tex]

 

Como já temos uma das raízes, basta-nos apenas duas das relações acima para encontrarmos as outras duas. Fazendo  [tex]x_1=-3[/tex]  e utilizando as relações (i) e (iii), temos:

 

[tex]\begin{cases} -3 + x_2 + x_3 = -5 \\ -3x_2x_3 = 72 \end{cases} \Rightarrow \begin{cases} x_2+x_3=-2 \\ x_2x_3=-24\end{cases} \Rightarrow \begin{cases} x_3=-2-x_2 \\ x_2x_3=-24\end{cases} \\\\\\ \Rightarrow x_2(-2-x_2)=-24 \Rightarrow -x_2^2-2x_2+24=0 \Rightarrow x_2=\frac{2\pm\sqrt{4+96}}{-2}\\\\ \Rightarrow \boxed{x_2=-6\text{ ou }x_2=4} \Rightarrow \boxed{x_3=4\text{ ou }x_3=-6} [/tex]

 

As outras duas raízes da equação são, portanto, além de -3, 4 e -6

 

Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.