O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.
Sagot :
Sabendo que -3 é uma das raizes a divisão do polinômio por (x+3) é exata.
Então podemos fatorar o polinômio fazendo:
[tex](x+3)(x^2+2x-24)=0[/tex]
Resolvendo a equação do segundo grau acima obtem-se as outras duas raizes da equação original:
[tex]\Delta=2^2-4 \cdot 1 \cdot (-24)=100[/tex]
Utilizando as fórmulas de Bhaskara:
[tex]x= \frac {-2+\ \sqrt{100}}{2 \cdot 1}=\frac {-2+-10}{2}= 4 ou -6[/tex]
Então o conjunto solução da equação original é: S={-6, -3 e 4}
Olá, Mary.
O polinômio da questão é de grau 3 e possui, portanto, três raízes.
Como conhecemos uma das raízes da equação, podemos encontrar as outras duas por meio das Relações de Girard para raízes de polinômios de 3.º grau.
Primeiramente, vamos enunciar as Relações.
Seja o polinômio de grau 3 na forma geral abaixo:
[tex]P(x)=ax^3+bx^2+cx+d[/tex]
De acordo com as Relações de Girard, suas raízes, ou seja, os valores [tex]x_1,x_2,x_3[/tex] para os quais temos [tex]P(x_i)=0,i=1,2,3,[/tex] possuem as seguintes relações:
[tex]\begin{cases} x_1 + x_2 + x_3 = -\frac b a\text{ (i)} \\ x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac c a\text{ (ii)}\\ x_1 \cdot x_2 \cdot x_3 = -\frac d a\text{ (iii)}\end{cases}[/tex]
Como já temos uma das raízes, basta-nos apenas duas das relações acima para encontrarmos as outras duas. Fazendo [tex]x_1=-3[/tex] e utilizando as relações (i) e (iii), temos:
[tex]\begin{cases} -3 + x_2 + x_3 = -5 \\ -3x_2x_3 = 72 \end{cases} \Rightarrow \begin{cases} x_2+x_3=-2 \\ x_2x_3=-24\end{cases} \Rightarrow \begin{cases} x_3=-2-x_2 \\ x_2x_3=-24\end{cases} \\\\\\ \Rightarrow x_2(-2-x_2)=-24 \Rightarrow -x_2^2-2x_2+24=0 \Rightarrow x_2=\frac{2\pm\sqrt{4+96}}{-2}\\\\ \Rightarrow \boxed{x_2=-6\text{ ou }x_2=4} \Rightarrow \boxed{x_3=4\text{ ou }x_3=-6} [/tex]
As outras duas raízes da equação são, portanto, além de -3, 4 e -6.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.