O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade de especialistas dedicados em nossa plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
Olá, Patrícia.
A característica geral dos números ímpares é que são números consecutivos a um número par.
Portanto, a representação geral de um número ímpar é:
[tex]\text{Como }2n\text{ \'e par},n\in\mathbb{N} \Rightarrow \boxed{2n+1\text{ \'e \'impar}}[/tex]
Uma sequência de três números ímpares consecutivos é, portanto:
[tex](2n+1,2n+3,2n+5)[/tex]
O problema pede três números ímpares consecutivos que somem 2001.
Assim:
[tex]2n+1+2n+3+2n+5=2001 \Rightarrow 6n+9=2001 \Rightarrow 6n=1992\\\\ \Rightarrow n=\frac{1992}6=332[/tex]
A sequência de números procurada é, portanto:
[tex](2n+1,2n+3,2n+5)=(2\cdot332+1,2\cdot332+3,2\cdot332+5)=\\\\ =(664+1,664+3,664+5)=(665,667,669)[/tex]
Podemos escrever 2001, então, como sendo a soma dos seguintes números ímpares consecutivos:
[tex]\boxed{2001=665+667+669}[/tex]
Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.